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EXECUTIVE SUMMARY 

This  study is best summarized as the development of a new  signal 

processing   technique   followed   by   its   engineering   application   to   ocean 

wind  waves.     The  fundamental   motivation  was,  are ocean  waves  random,  or 

do they  self-organize  into  a finite number of discrete sinusoids?     And  if 

they   do   self-organize,   could   their  behavior  be  better  understood   with   a 

more   realistic   mathematical   decomposition? 

A   uniquely   new   harmonic   retrieval   technique   called   "Harmonic   Phase 

Tracking"  (HPT)  was  developed.     Unlike the usual Fourier Series 

representation   which   uses   a   uniformly-spaced   set   of   component 

frequencies,   HPT   estimates   the   true   number   of  harmonics   (signal   rank) 

along   with  their  true frequencies,   amplitudes   and  phases.     A  very   simple 

fact serves as the basis for HPT:    for a harmonic signal, it is possible to 

recover  the true  phase  using  only   an  estimated  frequency.     HPT  exploits 

this by finding  a series of true phases for shifted windows of the time 

series;     the slope of the unwrapped phase versus  time equals the true 

frequency.     For   the  general   case  with   multiple   sinusoids   (wideband 

signals),  total  least squares  is  used  and  iteration  is required  to  converge to 

the   best-estimated   parameter   set. 

HPT  is  applicable  to   any  time  series  and  parameters  can be  slowly-varying. 

Deterministic   versus   stochastic   components   are   identified   from   inspection 

of parameter evolution  versus  time.     HPT  is  an  adaptive,  "high resolution" 

technique,   meaning   it  is   not  a   linear  operator   and   that  the   frequency 

resolution  exceeds   the  Rayleigh   limit.     Extensive  validations   are  included 

for   analytical   and   laboratory   signals   where   the   signal   parameters   are 

known. 

This   new   HPT-based   representation   has   great  promise  for   the  better 

understanding   of  ocean   waves   and   any   other   signals   with   physically- 



present  sinusoidal  components.     Two  sets  of full-scale  ocean  waves  are 

presented   here.      The  first  control   group   corresponds   to   stationary 

conditions,  while the  second  set corresponds  to  Hurricane Bob  on  August   18 

and  19,  1991.    Both data sets include waves at multiple gage positions in 8 

meters of water off Duck, NC.    The results demonstrate that there is a 

coherent  and   discrete  structure  to  the  waves  that  evolves   very  slowly   over 

space  and  time,  as  inferred  from  inspection  of the evolution  of mean 

frequency   and   amplitude   versus   time,   and   most   importantly,   from 

inspection   of   the   continuous   phase   versus   time   for   various   components. 

VI 
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CHAPTER 1 

INTRODUCTION 

Ocean  engineering  can  be  described  as  the  design  of physical  objects  that 

operate in large bodies of water.    It is a diverse field of study that 

encompasses   the   disciplines   of  civil,   mechanical   and   electrical 

engineering,   as   well   as   chemistry   and   physics.   Sample   applications 

include   ships,   buoys,   breakwaters,   piers,   submersibles,   moorings,   oil 

exploration   platforms,   propulsion,   coastal   erosion,   and   environmental 

instrumentation.     For  the  majority  of these  applications,  the  key  to  their 

optimal   operation   and/or   survival   is   understanding   their   interactions 

with  various   types  of  surface  waves.   It  is  not  surprising,   therefore,  that 

the  study  of waves  and  how  they  dynamically  excite  these  objects 

constitutes   the   greatest   single   emphasis   in   ocean   engineering   research 

and   design. 

Decades   of  intense   research   and   measurements   on   ocean   waves   have 

provided   ocean   engineers   with   a   reasonable   capability   to   confidently 

1 



place  objects  in  the  ocean  such  that  they  will  perform  their  intended 

function  at  an  economical  cost.     However,  it cannot be inferred from  this 

statement  that  ocean   engineers  have  a  "reasonable"   capability  to  locally 

describe  a  typical  wind-driven  wavefield  either  spatially  or  temporally.     At 

one  extreme,  there  are global  descriptors  such  as probability  density  and 

spectral  functions  that have proven useful.     At the other  extreme,  it is 

sometimes  possible  for  design   purposes  to  approximate  the  irregular 

surface as  a  single monochromatic  wave using  small  or finite  amplitude 

wave theory  with  a  stochastically  averaged  amplitude and  period.     But 

neither  of  these   approaches   are  acceptable  for   a  great  many  problems, 

and neither provide any level  of insight into  the wavefield itself.     As one 

example,   the  widely  used  linear  wave  theory  only  describes  the  wave 

below   the  mean free surface,  and  this creates  a fundamental  conceptual 

problem   regarding   the   dynamic   velocity   field   for   arbitrary   bichromatic 

waves.     If the  frequencies  are  approximately   equal,  then  the  velocity  field 

is  consistent  (both  fields  referenced  to  the  mean  free  surface)   and 

straightforward   to   interpret.      But  if  the  frequencies   are   widely   separated 

such  that  there  is  a  high  frequency  wave is  superimposed  on  a  much 

lower  frequency   wave,   the   velocity  field   physically   corresponds   to   the 

higher   frequency   monochromatic   wave   superimposed   on   what   looks   like   a 

quasi-static   mean   free   surface   with   a   time-varying   current   (e.g.,   the 

lower  frequency   monochromatic  wave).     In   other  words,   the  velocity  field 

for one of the two bichromatic waves  is now  referenced not to  the mean 

free  surface  as  in  the first case but to  the instantaneous  surface of the 



second  wave -  even  above  the  mean  free  surface.     The  transition  between 

these two cases is not clear.    As a second example, consider the 

superposition of two collinear waves  in an intermediate water depth.     It is 

possible  to  have  two  waves  with  different wavelengths  but  the  same 

frequency if the depth is  such that it produces  Stokes harmonics for the 

lower  frequency  shoaled  wave  but  not  for  an  independent  free wave  at 

one  of the  super harmonic  frequencies.     In  this  case  the  Stokes  harmonic 

wavelength   is   an   (even)   integer  harmonic   of  the  fundamental   low 

frequency   wavelength   which   does   not   obey   the   dispersion   relationship. 

As before,  the  mathematical   treatment  of this  case  is  unclear. 

This dissertation addressed the need for an analysis tool to allow for a 

physically  meaningful  local  descriptor  of a  wave  field.     In  essence,  such 

an  analysis  tool  would  provide  suitable  information  to   "bridge  the  gap" 

between   the   examples   described   above. 

An  entirely new  technique called Harmonic   Phase   Tracking   (HPT) is 

presented.     This  parameter   estimation   technique  is   not  restricted  to   any 

signal  or  noise characteristics  such  as  rank  or  normality.     HPT  decomposes 

a finite  length  deterministic  or  stochastic  signal  into  a  set of discrete 

sinusoids   of  minimal   rank   with   constant  but   arbitrary   amplitudes,   phases 

and   frequencies   (subject   to   certain   time-frequency   ambiguities),   with 

noise  that  is   not  necessarily   white   nor  uncorrelated.     It  is   demonstrated 

that   sinusoids   physically  present   in   the   signal   can   be  confidently 



identified using  ensemble  averaging  and  phase continuity.     This  is  a 

significant new capability offered by HPT, and it is used to provide a 

wealth  of new  information  for  a  wide  range of physical  signals, 

particularly   mildly   nonstationary   time   series   where   time-frequency 

distributions   would   only   provide   approximate   qualitative   and   quantitative 

insights. 

At one extreme, HPT is best applied when there is reason to believe that the 

signal   is  multiharmonic  with   a  discrete  frequency  vector  -   for  example, 

with   some   geophysical   processes,   structural   responses,   radar,   sonar,   etc. 

Conversely,  it is also shown that the inherent ability of HPT to optimize a 

frequency  vector  means  that  it  can  also   efficiently  and  reliably  model   and 

identify   even   white   noise.      Subsequent  post-processing   analyses   are   then 

possible   to   estimate   other   vector   parameters   of   engineering   interest   such 

as   stationarity,  homogeneity,   and   directionality.      The  major  emphasis   in 

this   ocean   wave  study   involves   development  and   validation  of the  signal 

processing   technique   itself.      But  given   the  powerful   new   capabilities 

offered  by  HPT,  that emphasis  is  understandable,  and  is  not that 

uncommon   when   compared   to   the  development   of many   other 

engineering   analysis   tools   (for   example,   the   numerical   integration 

techniques   vital   to   diffraction   theory). 

The  second  chapter presents  some of the  issues  related  to  the  description  of 

typical  ocean  wave fields.     There are two  conclusions:  (1) that there is 

strong   evidence   that   a   slowly-varying   spatial   and   temporal   structure   to 
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typical  wave fields  does  exist,  but (2)  that  there are no  existing  techniques 

available  for   identifying   the   structure.      Chapter  3   reviews   the   strengths 

and  limitations  of available  spectral   analysis  ("low"   resolution)   and 

parameter   estimation   ("high"   resolution)   tools.      Spectral   analysis   is 

discarded  as  a non optimum choice for quantifying a wave field  for a 

variety   of reasons,  primarily:   (1)   the  fact  that  the  orthogonal   Fourier 

harmonics   are   not   physically   meaningful,   (2)   biasing   (leakage)   between 

Fourier  bins,   and  (3)   the  need  for  ensemble  averaging  to  get  statistically 

meaningful  results.     Similar  arguments  hold  for  wavelet  analyses.     The 

high   resolution   techniques   are   likewise   discarded   because   they   assume 

white noise  and can only be applied to  low rank signals. 

Chapter  4  presents   the  fundamentals   of  the  new   Harmonic   Phase  Tracking 

(HPT)   parameter  estimation   methodology  that  was  developed  in  this   study. 

The key fact exploited by HPT is that a least squares fit between a 

monochromatic   signal   with   unknown   parameters,  and  a  trial 

monochromatic   signal   with   only   an   approximately-correct    frequency, 

allows  for recovery of the  true  phase.     Then,  if several   [true]  phases  are 

identified  for a series of segments  shifted  in time,  the  slope of this phase 

vector  versus  time then  equals  the  true  frequency.     The  extension  to 

multiharmonic   signals   follows   naturally   as   an   iterative  analog.      The  HPT 

model  is  a  very  "natural"  basis  consisting  of the  minimum  number  of 

sinusoids,   with   rank   and   frequencies   dictated   by   the   signal   properties, 

needed to  match the time domain signal  (with some exceptions).     It is a 



high   resolution,   adaptive parameter   estimation   technique   that   can   be 

applied   regardless  of  the (unknown)   signal  rank.      Ensemble   averaging   of 

successive HPT parameter estimates (evolutionary plots)  allows  it to  be 

used   quite   effectively   as a  time-frequency   analysis   tool   for   nonstationary 

processes. 

Chapter 5   is  a very  long  and  thorough  Chapter that presents  benchmark 

validations using a variety of analytical   (deterministic)   and   stochastic 

signals   including:   multiharmonic   signals   with   and   without   noise; 

nonstationary   sinusoids,   and  chirped  sinusoids.     Some  of  the  Chapter 

conclusions   include  demonstrations  that:     (1)  HPT  finds   the  correct  rank 

with   exact   amplitudes,   frequencies   and   phases   (is   unbiased   for 

deterministic  signals);     (2)  noise  biases   estimated   signal   amplitudes  but 

signal   frequencies   are  relatively  unbiased;   (3)   noise   can   be  easily 

identified   and   eliminated   with  ensemble   averaging   ;   (4)   the  technique   is 

insensitive  to  linear  amplitude  variations;   (5)  it  does  model   sinusoids  with 

varying   frequency;    (6)   time-frequency   resolution   approaching   half   the 

Fourier   value   is   (conservatively)   achieved;   and   (7)   HPT   is  numerically 

robust.     In  short,  this  new   "Harmonic  Phase Tracking"  technique  is  a 

valuable   new   contribution   to   the   signal   processing   community   in   general, 

and  it  is  shown  to  accommodate the non  constant  amplitudes  and 

frequencies,   high   rank,   and   unknown   noise   characteristics   expected   for 

typical   ocean   waves. 



Chapter  6   investigates physical   water   wave   signals   with   approximately- 

known   parameters.     This includes ocean  tide and laboratory scale forced 

waves from  a wave generator.     In each case HPT  either confirmed 

parameter  values   (like  tidal  periods)   or  suggested   more   accurate 

parameters  (e.g.,  HPT  estimates  imply  that  one particular  wavemaker has 

internal   resonances   such   that   it   produces   frequencies   that   deviate   from 

the   equally-spaced   Fourier   set). 

Chapter 7 is the main focus of this study, and it addresses  ocean waves 

using data measured  at an  extended bottom-mounted  array  of gages.     Wave 

fields   are   analyzed   representing   both   stationary   and   nonstationary 

(Hurricane  Bob)  conditions.     This  multi-gage  array  allows  for  spatial 

(homogeneity)   as   well   as   temporal   (stationarity)   checks   on   the   variability 

of the estimated  stochastic parameters.     HPT  allows for new  insights  into 

ocean  wave  fields  that  are  not  based  on  inspection  of averaged  parameters 

from   existing   orthogonal   (i.e.,   nonphysical)   techniques.      Conclusions   and 

observations  from  this  Chapter  include:   (1)  ocean  waves  do   "self organize" 

into   discrete  packets   that   propagate   coherently   for  time   scales 

approaching  one hour  (i.e.,  it  is  not necessary  to  assume the spectrum  is 

continuous);     (2)   in   general,   the  frequencies  of the  discrete  packets 

decrease  slowly  versus  time;   (3)  multiple  packets  can  merge  and,  single 

packets can  split;     and  (4)  packets  at widely-separated  gages  show  a high 

degree   of   spatial   coherence   as   measured   by   their   respective   frequencies, 

amplitudes,   and   phases. 



Chapter 8 presents a perspective on HPT in terms of:     error measures and 

interpretation   issues,   HPT   linear   algebra   and   algorithm   improvements, 

and   further    engineering    applications. 

The  target  audience  for  this  dissertation   is  not  signal   processing  analysts, 

but  rather   the   much   larger  field   of  practicing   scientists   and   engineers 

who  use  (and  are  often  overly  trustful  of)  spectral  analysis  and  other 

parameter  estimation  techniques  as  tools  in  their  respective  fields  of 

study.     For this  reason  each  Chapter features qualitative  descriptions  and 

straightforward   examples   intended   to   clearly   demonstrate   the   significance 

of HPT  results  versus  other  widely-used  results. 

Standard   nomenclature  is  used   throughout.     Non-bold   lower  case  letters 

are either scalars  (e.g., f or fj   is   frequency)   or   continuous   functions   (e.g., 

t or x(t)).     Lower case bold  letters are  (typically  time domain)  column 

vectors  (e.g.,  x  represents a discrete time series).     Upper case bold letters 

are  either   matrices   or  frequency  domain   transforms   of  the   same  lower 

case time domain vector (e.g., X  is the Fourier Transform of x).     Variables 

with  subscripts  denote individual  values  from  a vector  or  matrix  (e.g.,  xk, 

Xk, or Ar).     Greek letters are scalars, often phase.    Variables are defined 

where   first   used. 



CHAPTER 2 

STOCHASTIC OCEAN WAVE ISSUES 

Who  actually  needs  an  accurate  vector  description  of a  general  ocean  wave 

field?     First,  consider the designer of an ocean-based facility such  as  a 

compliant   moored   floating   production   system   in   relatively   deep   water. 

This  particular  type  of facility  has  a  variety  of resonant  phenomena  such 

as   first-order   ship   and   cable   responses   and   second-order  drift   motions. 

Design   of  such   a  facility  requires   accurate  knowledge  of  the   instantaneous 

waves   and  the  corresponding  wave  envelope  in  both  time  and  space. 

While there are a host of other design  issues such as life cycle costs, 

maintenance   and   inspection,   etc.,   the   single   most   important   analysis 

objective   is   to   quantify   the   system   responses   to   operational   and   survival 

wave  environments.     As  a second  example,  consider  a physical 

oceanographer   studying   the   mechanisms   of   energy   transfer   in   a   wind- 

wave field.     How  does the primary frequency evolve in time and  space? 

Under  what  conditions   are  harmonics  (sidebands)   created?     How  do 

superimposed   waves   evolve?      Spectral   functions   resulting   from   long 



ensemble averages  do  not provide  the  level  of detail  needed  to  accurately 

identify   the   relevant   processes. 

Assume that a limited set of wave measurements exists that will be used to 

define these or other wave fields.     What questions  are natural  for  an 

engineer  or  scientist   to   ask  to   quantify   them?     What  parameters/functions 

would most ideally describe a wave field?    Are they practically obtainable 

using  available numerical  techniques?     How  do  the limitations  and 

uncertainties   in   these   obtainable   descriptors   affect   other   derived 

estimates   such   as   directionality?      Are   statistically-averaged   descriptors 

always    adequate? 

It  is   instructive  here  to   physically   and   qualitatively   describe  the 

characteristics  of "typical"  ocean  waves.     A  wave field  often  consists of 2  or 

more   sub   fields   propagating   from   different   directions   over   different 

frequency  bands.     The  dominant  sub field  is  typically  comprised  of waves 

between  1  and  12 seconds (0.08Hz to  1Hz).    These waves are generated 

locally  (e.g.,  within  a  hundred  mile  radius)  by  the  wind,  with  energy 

propagating   in   a   mean   direction   but   exhibiting   significant   spreading. 

This   spectral   band   is   typically   narrowband,   with   pronounced   grouping 

evident   in   the  time   history   realizations.      Superimposed   with   this   wind- 

generated   wave   field   is   (at   least)   one   independent   lower-frequency   sub 

field  which  usually  has  much less  energy  than  the local  wave field.     These 

swell   waves   typically  have  periods   greater  than   18   seconds   (0.055Hz),   and 
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are the remnants of a wind  wave sub  field  after traveling from  a very 

distant  (thousands  of miles)   generating  region.   Figure  2.1a  shows  a 

representative  time  history  of  one  typical   wave  field,   with   the 

corresponding  spectrum  shown  in Figure 2.1b.       Note first  that  while  the 

primary   bandwidth  of the  spectrum   is  narrowbanded,   the  waves   do 

contain energy over a wide band of frequencies.    The wave signal was low- 

pass  filtered  to   isolate  the  low  frequency  swell   subfield  (centered  around 

0.02 Hz in Figure 2.1b);    this component is superimposed as a dotted line in 

Figure  2.1a.        Energy  above  the  primary  spectral  bandwidth  corresponds  to 

a  distinct  third   wave  regime  representing  wind  waves  in  the  early  stages 

of   growth. 
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Figure  2.1a     Representative   Ocean   Waves   (Hurricane  Bob) 
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Figure  2.1b     Spectrum  of Representative  Ocean  Waves  (Hurricane  Bob) 

These  figures   are  presented   merely   as  representative  of  the  wide   variety 

of wave fields that are possible.    Note that these figures and this study do 

not  address  other  categories  of waves  such  as  seiche and  capillary  that  are 

present but not significant compared  to  the local  and swell  waves.     Second, 

this   study   will   purposely   avoid   extreme   shallow   water  waves   where 

nonlinear   superharmonics   are   bound   to   the   primary   frequencies.      Medina 

and   Hudspeth   (1990)   reference  4  previous   studies   which   concluded   that 

the  linear  hypothesis,   that  is,   that  the  waves   propagate   independently,   is 

valid in water depths greater than  10 meters,  so we can take that as an 

approximate  defining   measure  of deep   and   shallow   waves. 

What  additional   qualitative   descriptors   can   be   added  regarding   ocean   wave 

fields?     It seems  safe to  start by confidently stating that the waves  are 
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definitely  nonperiodic  at  any  time  scale.     From  a  mathematical 

perspective,   this   requires   that  the  spectrum  must  be  continuous   to   insure 

that there are no harmonics that would be periodic    - IF any such 

components  were  physically  present  in  the  signal.     As  discussed  later,  this 

condition  may  be relaxed  depending  on  the time  scale. 

Is a typical  wavefield  ever stationary?     Strictly speaking,  no.     However,  to 

answer this  correctly  we need  to  define two  things:     a quantitative 

measure and a time scale.     It is prevalent but not always justifiable in 

many   engineering   studies   to   conveniently   select   either   or   both   such   that 

the wavefield  is  assumed  to be "stationary".     Various  measures of 

stationarity  include:   strict  (or  isotropic);   weak  (or  wide-sense);     strong   (or, 

completely,  or strict-sense);     or stationary  to  order K  (Bendat and  Piersol, 

1986;    Trevino, 1982;    Jenkins and Watts, 1968;    Papoulis, 1965).    Usually, a 

signal  is  considered  stationary  if the  second  order  statistics  (K=2,  for mean 

and   standard   deviation)   are   invariant   with   time   (i.e.,   weakly   stationary). 

The next issue is the time scale.     Defining the time scale of interest actually 

controls  whether  the  question  of  stationarity  is  even  tractable.     At  one 

extreme,  waves  observed  over  a  span  of several  minutes  can  appear  fairly 

uniform   in   amplitude   and   period,   even   after   decomposition   into   finite 

frequency bands.     At the other extreme,  if the goal  is to describe the 

evolution  of the  waves  before,  during,  and  after  a  long  multi-day  storm, 

then  the frequency  resolution  must be  so  small  as  to  make  the spectrum 
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essentially   continuous.      Accordingly,   ocean   engineers   and 

oceanographers   typically  define  a  time  span  of interest  of no   more  than 

several  hours   as  sufficient     "for  engineering  purposes".     Elgar  and 

Seymour (1985) concluded that taking  17 minutes of data 4 times a day 

provided   adequate   estimates   for   significant   wave  heights   (proportional   to 

the   standard   deviation   and   therefore   implying   weak   stationarity) 

compared to  longer estimates based on records of typically 5  hours;     in 

other words,  sampling  every  6 hours  was  sufficient.     On  the  other hand, 

Toba, et al  (1988) concluded that for growing seas the time scale was more 

like "10 to  15 minutes to produce a shift in the peak frequency."      This time 

scale  is  consistent  with  assumptions  from  Goda (1985)  and  Athanassoulis,  et 

al,   1992.     Detecting  whether the slow  shifts  of statistical  (often  scalar) 

descriptors   relevant   to   nonstationarity   are   significant   is   not   detectable   by 

simply   tracking   the   standard   deviation   (scalar  area   under   the   spectrum)   - 

demonstrating   that  tests   for   "weak"   stationarity   are   at  best   approximations 

for the true conditions.    Ideally, if the signal could be modeled locally as a 

finite  number  of sinusoids,   then   a  more   absolute  measure  of  stationarity 

would be to examine the variation  in all   of  the   component  parameters 

versus   time. 

The   next   natural   question   is   complementary   to   the   temporal   stationarity 

issue and relates to the spatial homogeneity of the wave field.     This can be 

more   important   than   the   question   of   stationarity,   particularly   in   the 

design  of  structures  with   dimensions   at  least   as  large   as   the   wavelengths; 
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one example is the proposed U. S. Navy Mobile Offshore Base (MOB) which 

has a length scale of approximately  1.5  km.    What are the typical  spatial 

dimensions   associated   with  waves   both   parallel   and   perpendicular   to   the 

direction  of wave  advance?     The  latter is  often  labeled  "short  crestedness". 

For this,  we can postulate that the answer would  vary depending  on the 

circumstances  of the  waves  (fetch,  wind  stationarity,  etc.).     One 

quantitative   engineering   answer   to   this   question   was   given   by   Hughes 

(1986)  who  processed  wave  measurements  from  an  offshore  array  to 

present  a  plot  of  "maximum  coherence"   (with   and  orthogonal   to   the  wave 

advance)   versus   gage   separation   normalized  by  the  wavelength.      He 

concluded  that  individual   waves  are  indeed  typically   "short  crested"   as 

measured by the coherence over distances of one or at most a few 

wavelengths.       So,  this result does  give us one quantitative measure with 

respect   to   one   distance   scale   (approximately   one   wavelength). 

It  is  also   instructive  to  invoke  philosophical   arguments  to  help   spatially 

and temporally describe a wave field.     Consider, for the moment,  a 

wavefield  that is not  actively  growing  from the wind.  It is  known  that the 

energy   continually   spreads   over   a   range   of  directions   relative   to   the 

principle  wave   advance,   and   that   this   spread   decreases   with   propagation 

distance,  resulting  in  more  long  crested  waves  (Kinsman,   1984).     This 

spreading   is   further  reduced   as   the   water  depth   decreases   (Sorensen, 

1993).     Assuming  that  if a  reasonable  (not  quantitatively  defined) 

propagation   distance   existed,   we   would   expect   fairly   uniform   conditions 
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based   on  philosophical   arguments   such   as   conservation  of  energy  flux  for 

a unit width of the wave.    This is,  in fact, the justification for ray tracing 

with   wave   refraction   studies.      Furthermore,   many   investigators   formally 

argue  that  the  energy  in  each  frequency  band  of the  spectrum  should  be 

only  a  "slowly-varying"   (relative  to  the  peak  period)  function  of space  and 

time (Komen, et. al.,  1994; Kinsman, 1984).    Since this implies that the 

energy  in  each  frequency  band  does  propagate  smoothly,  at least over 

short distances, it therefore seems reasonable to propose a model for a 

finite segment  of stochastic  ocean  waves  consisting  of a finite  summation 

of  harmonic   waves   (with   an   as-yet  unknown   discrete  frequency   set   and 

amplitudes   with   an   unknown   spatial   dependence).        These  narrowband 

segments   that   are   coherent   over   slowly-varying   time   scales   are   often 

referred to as "wave packets".    Note also that the use of Fourier Series is 

only  a  crude  approximation  to  this  finite,  discrete  summation  because  of 

the  finite  frequency   resolution   and   the  condition   of  periodicity   implicit   in 

the   approach   (discussed   further   in   the   next   Chapter). 

There is a third approach for addressing this issue of homogeneity, and 

that is physical observations. Kinsman (1984, p543) offers an excellent 

quote  next to  an  aerial  photograph  of waves: 

The sea  surface  is irregular but,  viewed from above,   it also  seems 

to   have  considerable   regularity.     Notice  particularly   the fairly 

regular  arcate   structure  strongly   marked  by   the   breaking   crest 

to the right of center.    Mr. R. G. Stevens,  W.H.O.I., first drew this 

regularity to my attention.  He  tells me that he has found that 
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when  the regularity of the pattern  in a  growing sea  is 

apparently lost it can often be seen again if the sea is viewed 

from a  higher level.     This suggests  that neither purely 

deterministic   nor  purely   stochastic   mathematical   models   are 

likely to be adequate for an understanding of the physics of the 

sea.     The regularity indicates that some selective process may well 

be at work even in the later stages of the growth of a sea." 

In  other  words,  while the  entire field  is  undeniably  stochastic,   there  is 

evidence   of  deterministic   behavior  at   some  intermediate   spatial   scale. 

Radar   and   stereo-photogrammetry   measurements   loosely   qualify   as 

"physical   observations"   and  fall  into  this  category.     Here,   too,  structures 

can  be  observed  in  apparently   "irregular"   seas,  typically  at  a  scale 

proportional  to  the  wave groups  (or packets).     Werle  (1996)  illustrates  the 

intensity  of a  low   grazing   angle  radar  backscatter  signal   versus  range  and 

time,   and   concluded  that  the  dimensions  of the  most  apparent  features 

were  proportional   to  wave   "packets"   or  "groups"   that  were  evidently  quite 

organized.      Stereo-photogrammetry,   while   very   difficult   and   expensive   to 

apply,  also  yields  contour  mappings of wave Fields  that allow  for ready 

identification  of spatial   characteristics  (Goda,   1985;     Horikawa,   1988). 

In  a broad  sense,   these  visual   and  radar  observations  are  consistent  in 

finding   homogeneity   and   structure   at  a   scale  slightly   larger  than   the 

apparent  waves.     That  scale  of structure  is  likewise consistent  with  the 

previously   described   philosophical   expectation   that   amplitudes   and   phases 
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should  be  "slowly  varying",  that  is  coherent  or  organized,   over  large 

distances   and   time.      However,   neither  observational   technique   is   capable 

of  decomposing   the  wave  field   into   its  constituent  components   (however, 

in  the  limit  of a  very  narrowbanded  process  the waves  approach 

regularity  and   in  these  cases  of essentially  one  wave  component  these 

techniques   can   be   useful). 

While the discussion over the last several pages does not answer the 

question  of spatial homogeneity,  it does  establish  that it is  suspected  to 

exist  over finite-sized  regions  of a wavefield  and  is  a  worthwhile  question 

to   address   in   research. 

Another   necessary   parameter   for   describing   a   wavefield   is   the   number   of 

distinct  wave   directions   simultaneously  present   -   whether  the   sea  is   uni- 

or  multi-directional.     Note  that  an  array  of multiple wave  gages  is  required 

to   resolve  this   question,   subject  to  two  assumptions  when  estimating 

directionality: 

all   components   in   a   given   frequency   band   are   unidirectional; 

that   is,   incident   energy   bands   are  non   overlapping,   and 

•     the   scale   of  short   crestedness   is   a   known   function   of frequency. 

The   first  condition   of  non  overlapping  bands   can  be  practically   satisfied 

when   no   more  than   one   swell   and/or   one   locally  wind-generated  wave 

field  are present.     However,  this  is  typically  not true  for the  more  common 

18 



case of multiple wind-generated wave fields.     In these latter cases,  the 

complex  Fourier  Series  ordinates  at  each  bin  from  one  subrecord  will 

physically  correspond to  the average  amplitude and phase of all  the 

component waves  (0  to  Nyquist  frequency)   and  all  wave  directions 

correlated   with   that  Fourier  frequency.      Thus,   there   is   large   uncertainty 

associated  with  each  estimate.     It is  well  known  that corresponding  cross- 

spectral  phase  functions   (used  to   estimate   directionality)   are  useful   only  if 

a  large  number  of  subrecords   are   averaged. 

The   second   condition   regarding   short   crestedness   cannot   be   accurately 

evaluated.     Since  there  is  no   existing  technique  for  determining   the 

length  scale  for how  short crested  a wave field really  is,  a  conservative 

length  is  assumed  -  for  example,  one  wavelength  at  a  frequency  of interest 

(which  agrees  with  the  conclusions  from  Hughes,   1986).     Then,  cross 

spectra/correlations   between   the   finite-spaced   gages   and   the   wave 

dispersion  equation  are  used  to   estimate  directionality.      [The  array 

dimensions   therefore   predetermine   which   frequencies   can   be 

considered.]     In  cases  where the  actual  short crestedness  is  less  than  the 

assumed   value,   then  cross   spectra  may  still   asymptotically   estimate  the 

correct  incident  direction,   but  the  variance   will  be  much   larger   and, 

again,  a  large  number of ensembles  will  be  required  to  account for that 

uncertainty.     Thus,  knowledge  of the  general   spatial   structure  of the 

wavefield,  such   as  the  scale  of  short  crestedness,   is  presently  unavailable 

but   inherently   important   in   estimating   directionality   from   a   given   array 
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because  at  the  very  least  it  establishes  the  minimum  amount  of statistical 

averaging    required. 

One  last  question   can  be  asked   regarding   the  probability   distribution   for 

the  instantaneous  wave  amplitudes.     This  seems  like  a  relatively 

straightforward   question   to   answer  using   a  histogram   of  available   data. 

However,  it  indirectly  is  involved  with  several  other issues  and  is 

therefore important.     The first  issue that comes  in  is  ergodicity of the 

wavefield.     A  nonlinear wave  in  very  shallow  water has  a definite  non- 

Gaussian distribution, as measured over space at a fixed time or at a    fixed 

position versus time.     However,  an  ensemble average at many gages  at  a 

fixed  time  would  appear Gaussian  -  thus  making  a very  shallow  wavefield 

technically  nonergodic  (Tucker,   1995).     Second,  it is known  that if a linear 

(i.e.,   not  shallow   water)   wavefield   is  both   stationary  and  homogeneous, 

then because of the dispersive nature of the waves  the sea will be 

comprised   of  a  large  number   of  independent  sinusoids   and   therefore  the 

distribution  must be Gaussian  (Komen,   1994).       Both of these conclusions 

are seen  to  be violated  if wave coupling  -  nonlinearity -  is  present (and, 

conversely   and just  as   importantly,   they   are  not  violated   for  linear 

conditions).     Such  coupling  is  best modeled  as  two phase-locked  sinusoids 

at   integer-multiple   frequencies   (e.g.,   Stokes   components)   -   illustrating   yet 

another  example  of  "deterministic  behavior"   in   a   stochastic   wave   field. 

While this study does not address such shallow water waves,    this does 

further  demonstrate  the  potential   value  of  a  tool  that  would  allow  for 
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identification  of discrete  vector  sinusoids  from  a random  wave record.     The 

bispectrum is presently used for this type of study but it has two 

drawbacks:  (1) it is FFT-based  so  it suffers  from low frequency resolution, 

and   (2)   the  uncertainly   associated   with   bispectral   estimates   typically 

requires   an  order  of magnitude  more  data  than  the  usual   spectrum,   which 

is  a serious  problem  for  ocean  waves  because of stationary  limitations. 

What is the final verdict of all of these discussions?    There are two.    First, 

there indeed  does  seem  to be  an  as-yet unidentified  spatial  and  temporal 

structure to  a typical  irregular wind-driven  sea that is  worthy  of study.     A 

final  quote  from  Kinsman  (1984,  p402)  is   again  instructive: 

Our common  sense  tells  us  that,   even  within  a  generating area, 

any  closely  suitable  spectrum  must  be  a  slowly  varying function 

of space and time.    The process simply cannot be a stationary 

Gaussian process as we have been assuming.    This is most 

unfortunate.     You may rest assured if I had any idea of how to 

build  a  manageable,   nonstationary,   Non-Gaussian  model  of a 

stochastic process that would be a better approximation to  the sea 

surface,   I'd do  it.     Fortunately,   depending  on  the  weather,   over 

areas of hundreds of square miles and for many  hours at a  time, 

wave   records  lasting from  a few  minutes  to  several  hours  often 

look so much like cuts from a stationary Gaussian process that 

you might just as well treat them as thought they were.     The 

differences  are  unimportant.     Such  a process,   whose  statistics  will 

remain  invariant under time  and space  translations up  to  a 

certain size,  we call quasi-stationary.    // you insist on being very 

precise in your language,  you will describe the sea surface as a 

quasi-stationary,   pseudo-Gaussian   process." 
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Kinsman   confirms   the  main   conclusion  of  this   Chapter  that  there   should 

be  some  structure  in  a  wavefield,   and  that  the  component spectral 

amplitudes   should  be  slowly   varying functions of time and space (i.e., 

quasi-stationary).     He  then  suggests  the usual   approach  to  wave  analysis  - 

to  assume local   stationarity  and  homogeneity  even  though  he  knows  better 

(although it is not stated exactly which statistics he feels will be 

invariant).      But  most  importantly,   Kinsman   directly   confirms   the  thrust  of 

this study when he states the need for a better stochastic model.    In doing 

so   he   indirectly   confirms   the   second   conclusion   from   this   section,   namely, 

that   existing   techniques   have   not   been   successful   in   satisfactorily 

answering   these   questions   about   ocean   wave   fields. 

Those   techniques   are   evaluated   in   the   next   Chapter. 

22 



CHAPTER 3 

REVIEW OF ESTIMATION TECHNIQUES 

The field  loosely  defined  as  spectral  analysis has  long  been described  as  an 

"art as much as a science."     And, while there has been a virtual  explosion 

of new   techniques   during   the  last  two  decades   that  deliver  revolutionary 

improvements   in  resolution,   it  cannot  be  denied   that  results  are   still  very 

dependent on the insight and skill of the analyst.    This can be just as 

frustrating  to  the  analyst  generating  the  results   as  it  is  to  the  engineer  or 

scientist who needs to use the results.    The objective of this Chapter is to 

review   the   assumptions,   concepts,   and   consequences   of  available   signal 

processing  techniques  as  they  may  apply  to  the  analysis  of ocean  waves. 

3_J Background 

The   tools   and   terminology   of  signal   processing   can   be   overwhelming   to 

anyone who  is not an  active practitioner in  the field.     Terms like Nyquist 

frequency,  Hamming  and  boxcar  windows,  ARMA  models  (with  zeros  and 
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poles),   Maximum  Entropy,   ensemble   averages   (versus   Expected   Values), 

signal   subspaces,  Cramer-Rao  bounds,   degrees   of  freedom,   leakage,   and 

white  versus  colored  noise  quickly become  such  an  alphabet  soup   that  the 

significance  of the  final  results  are  completely  lost,  or  worse, 

misinterpreted.    Obviously, this situation should be avoided at all  costs.    It is 

a  very   real   danger  for  interdisciplinary   studies   like   the  present  one, 

because the engineering   objective  of describing   stochastic  ocean   waves 

can  only  be  achieved  by using  and  understanding  the mathematical 

language   of   stochastic   signal   processing. 

Naidu  (1996, p347) states this extremely well: 

"Perhaps   the   most   difficult   question   in   modern   spectrum 

analysis is,    how does one determine the right model of a time 

series  whose  finite  duration   sample  is  available  as  the  observed 

data?    As of now, we do not have any clear-cut answer to this 

question;  we have to depend upon  the physics of the problem to 

surmise on  the  nature  of signal  and noise sources." 

Usually  the  first  decision to  make  in  signal  processing  regards  the  a  priori 

assumptions   about   the   underlying   signal - in  this  case,  ocean  waves. 

There  are  advantages   and  potential  disadvantages  to   doing  this.     On  one 

hand,   incorporating   correct   insights   gives   the   analyst   added   flexibility   in 

choosing   the   "best"    technique   for   interpreting   the   measurements. 

However,   if those   insights   are  unfounded,   then   the  results   can   be   very 

misleading.     For  example,   the  final   spectrum   defined   by   the   ensemble 
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average of a  set of finite Fourier Transforms  (FFTs)  is  meaningful  only if 

the signal is known to be stationary.    If we have no idea of whether the 

signal   is   stationary,   or  alternatively  what  measure  of  stationarity  it 

possesses  (weak,  strong,  etc.),  then it would be necessary to  resort to 

general   time-frequency   techniques   such   as   Wigner-Ville   distribution, 

Evolutionary Spectrum, etc. (see Boashash,  1992).    If we suspected that the 

signal  indeed  was  reasonably  stationary  (say,  wide  sense)  but did  not know 

whether  the  spectrum  was  continuous  or  discrete,  then  we  could  choose  a 

nonparametric   approach   using   a   spectrum   based   on   the  FFT-based 

approach  described  above.     However,  we should  not expect too  much 

information   other   than   "the   approximate   distribution   of   variance   versus 

frequency"   from   that   analysis.      Techniques   that  require  only   that  the 

signal   be  stationary  represent  the   "lowest"   level  of  modeling   with  respect 

to  constraining  the  answer to fit  any particular set of a  priori   conditions. 

Conversely,   we  may  instead  have physical  reasons  to  expect  that  the  signal 

is  comprised  of a finite  number of sinusoidal  basis  vectors resulting  in  a 

discrete  "line"   spectrum  (for example,  the first few  mode  shapes  for  the 

response   of  a   multi-story,   lightly-damped   building   are   sinusoids   with 

integer multiples  for the periods).     In  this  case  the  signal  is  the  "highest" 

level   of  modeling   -   namely,   a   finite   summation   of  linearly-superimposed 

sinusoids  (with  noise).     If this  is truly  the case then  many of the new 

parametric   "subspace"   methods   described   in   this   Chapter   are   appropriate. 

But it bears repeating that caution must be used because it is easy to over 
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specify   the   signal   model   and   subsequently   make   untrue   conclusions 

regarding  the  signal  content.     In  other words,  results  which  are  tailored  to 

a  priori assumptions  may or may üQI tell  us  whether that  signal  structure 

(as  defined  by   the  assumptions   of  that  technique)   is  physically  present, 

only what its  structure would be H it was present. 

The quote from Naidu also specifically acknowledges the need to at least 

qualitatively  model  the noise,  which  is  defined  as  all  effects  not  included 

in   the   signal   model   (instrumentation   effects,   nonstationarities, 

nonlinearities, etc.).       It is very easy to overlook this step.    Since there is 

usually   very   little   insight   available  for   quantifying   this   "noise",   the 

assumption  is  often  made for  convenience  that  the  level  of the  error  is 

unknown   but   equally   likely   at   all   frequencies   -   precisely   (bandlimited) 

white noise.     In  fact,  as explained  later in  this  chapter,  the new  subspace 

methods   generally   require   this   assumption.      In  the present study of 

stochastic water waves this may not be  true - for example, it is equally 

plausible  that  "unknown  effects"   at  the  leading  edge  of a  spectrum   (like 

energy   downshifting)   or   at   the   peak   frequency   (where   energy   is   greatest 

and   the  chance  of  wave  breaking   is   highest)   are  relatively  larger  than   at 

the   other   frequencies,   negating   the   white   noise   assumption   and 

eliminating  the  use  of subspace  methods.     This  illustrates  how  serious 

consideration  of just one  facet  of the  analysis  -   in  this  case  the  unknown 

"noise"  effects  -  could,  by  itself,   steer  the  signal  processing  in  an  entirely 

different   direction    than    anticipated. 
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Regardless,  Naidu's ultimate  advice is to depend on the physics of the 

situation  (and  not  the  convenience  of  the  mathematics)   to   guide  the  signal 

processing.    That will be done in the next chapter for this study of 

stochastic ocean waves.     The remainder of this chapter focuses on two 

sections,   one  describing  traditional   (fast  being  replaced  by  the  term   "low 

resolution")   spectral   analysis   techniques,   and   a   second   section   describing 

the  new   subspace   decomposition   (or   "high  resolution")   techniques;      see 

Kay and  Marple  (1981) for an excellent tutorial.     The information  in  these 

two  sections  is essential  for understanding  the  scope of this  wave study 

and  the  corresponding  results.     A  brief third  section  is  included  that 

primarily   addresses   the   application   of   alternative   approaches   (e.g., 

wavelets)  to  ocean   wave  analysis. 

As  anyone  who  has  ever  studied  signal  processing  can   attest,  there is  a 

very extensive range of mathematics  associated with  it.     Not all  of the basic 

theoretical  concepts  are  addressed  in  this  review.     The  theory  of Fourier 

integrals  and  series  for  signals  with  finite  and  nonfinite  energy  is  a  good 

example,   where   measure   theory   is   required   to   properly   handle   various 

types of signals  (Carslaw,   1950  and Billingsley,   1986). 

3.2        Traditional    Spectral Analysis 

Since   the   subspace   techniques   presented   in   the   subsequent   section   have 

only been  fully developed  over the last decade or so,  the techniques  in  this 
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first  category   are  probably  the  most  familiar  to   engineers   and   scientists. 

And,   understanding   their   performance   sets   the  baseline  by   which   the   new 

subspace   techniques   are   compared. 

Approaches  that  are  classified  as   "traditional"   are  described  in   a  great 

many  texts   and  include: 

• Blackman-Tukey  spectrum  based  on  the  transform  of  the 

autocorrelation   function   using   the   Wiener-Khinchine 

relationship; 

Fast  Fourier  Transform   (FFT)   based   spectrum  using   ensemble 

averaging; 

AR   (autoregressive),   MA   (moving   average)   and   ARMA 

spectrum   based   on   polynomial   fitting,   and 

Maximum   Entropy   spectrum. 

Since  these can  all  be  shown  to  be equivalent,  assuming  only  that the 

spectrum  is  the transform  of the  autocorrelation  (Naidu,   1996;  p71,  242), 

for the  purposes  of this  section  only  concepts  inherent  to  the FFT-based 

approach  will  be detailed.     This  choice  also  provides  useful  background 

information   for   development   of  the   new   technique   in   Chapter  4. 

The   equation   defining   the   FFT-based   spectrum   appears   straightforward 

(e.g., Bendat and Piersol,  1986;    Kay,  1988).    Start with discrete samples of a 

continuous time series x(t)  as xm=x(mAt), m=l,2,   L.    Identify the [trial] 
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length  (M)  of the Fast Fourier Transform  (FFT),  then  define the  spectrum 

as: 

N 

*,,. v       lim     1  "V" 

k=l 

= E[i(fi)] 

1' X   (f.) 
3.1 

where:   S=spectral  estimate  at  discrete  frequency  fi (discussed 

momentarily),   N  =  intC^/j^)  =  integer  number  of independent  ensemble 

averages,    T=MAt is the length of the FFT integration interval,   X=complex 

Fourier  transform  of the  finite  length   vector  x (capitol   letters   denote 

Fourier Transforms  of the  corresponding  lower case  variable),  and  E[  ]  is 

the expected  value  operator.     Note  that  this  spectral  definition  uses  the 

"boxcar"   or  "rectangular"   window  for  simplicity.     The  spectral   estimate  at 

each  discrete  frequency  is  seen  to  be  a  simple  algebraic  average  (i.e, 

Expected  Value) of the  "raw"   spectra   S found from each FFT.    The 

prevalence   and   computational   efficiency   of  FFT   routines   makes   this   the 

most  popular  definition   of  "the  spectrum"   to   most  engineers. 

But  what exactly  does  the  discrete  spectrum  in  Equation   3.1   represent?  The 

first  clue  to  that  starts  with  the  strict  definition  of the  Fourier Transform: 

+oo 

X(f)s Jx(t)exp(-j2jcft)dt 3.2 

This  definition  requires   integration   limits  of plus  and   minus  infinity.     The 

only   way   to   make   this   equation   numerically-tractable   for   a   non-transient 

29 



Signal  x(t)  is to reduce the integration limits to be over a finite time 

interval,  which  is  the  same  as  zeroing  the time  series  beyond  those limits. 

Thus,  a  numerically-practical  finite FFT  is  performed  on  a  modified  time 

series  x'(t)  defined  as: 

x'(t)H 
0 
x(t) 
0 

T < t < «» 
0<t<T 

-oo< t <0 

This  is  more  rigorously  accomplished  by  instead  defining  a  window  w(t): 

w(t) = ^ 

T < t < o° 
0< t<T 

-«>< t <0 

such that    x'(t)=x(t)w(t) for all t.    This definition of w(t) is the well-known 

boxcar  or  rectangular  window.     When   this   is  substituted  into  Equation   3.2 

the   non-zero   resulting   expression   becomes: 

Xw(f) = J [x(t)w(t)]exp(-j 2*cf t) dt 3.3 

where  the  w  subscript denotes  the windowed  transform.     Note that this  is 

still  based  on  continuous  time,   and  yields  a transform  defined   over  all 

frequencies. 

The integrand in Equation 3.3  is a product.     It is a property of the Fourier 

Transform   that  a  product  in  one  domain  (frequency  or  time)   is   a 

convolution   of  the   transforms   in   the   other  domain   (time  or  frequency). 

Therefore, 
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xw(f)=3{x(t)w(t)}=3{x(t)}®3{w(t)} 

=X(f)®W(f) 3.4 

where the Fourier Transform operation on generic variable z(t) is denoted 

with the symbol Z(f>3{z(t)} and ® denotes the convolution operator. For 

the boxcar  window,  the Fourier  transform  W(f)  is  given  by: 

w(f) = sin(7T£[2T+l]) 35 

sin(Trf) 

The   consequence   of  converting   the   infinite  Fourier   transform   of  Equation 

3.2  into  the finite (windowed) Fourier transform of Equation  3.3  is  that the 

windowed   Fourier  transform   at   any   given   frequency   is   the   integral   from 

plus to minus  infinity of the true transform X(f) convolved by W(f).     This 

smears  the  true  transform  by   an   amount  proportional   to   the  bandwidth   of 

W(f),   which  is  approximately   1/j.    For example, a single sinusoidal  signal 

(constant   amplitude   and   phase   at   arbitrary   frequency   fo)  which  has  a true 

transform equal to a delta function at fo   would  yield  a  windowed  Fourier 

Transform that appears  as  a series of sidelobes (of width  l/j,  repeated  over 

all   frequencies   with   decreasing   amplitude   as   lf-fol increases).    It is also 

noted  that  multiple  sinusoids  within  this   */T   resolution   bandwidth   cannot 

be  identified.  This is the first explanation  for the limiting   */T   resolution   of 

a  FFT-based   spectrum. 

It is not the intent of this presentation to review  the  "art"  of designing  and 

applying   spectral  windows  such  as  Hanning,  Bartlett,   Gaussian,  etc.,  nor  to 

31 



discuss  aliasing  effects.     Later sections will  discuss  the role  that the  choice 

of  FFT-length   and   corresponding   number   of  ensemble  averages   play   in 

the   spectral   resolution   and   variance  of  the  spectral   estimates. 

There  is  a  second   more  intuitive  route  for  understanding   the  limiting 

resolution  bandwidth  available  from  FFT-based  spectra.     The  theory  of 

equations tells us that it is possible to identify at most 2N parameters from 

2N  discrete  measurements  (e.g.,  3  points  allow  a  quadratic  polynomial 

consisting  of  mean,   linear,   and   quadratic  coefficients  and  basis   vectors,   or 

3   Hermite   coefficients   and   the   corresponding   orthogonal   basis   vectors,   or 

3  of any other orthogonal  or non orthogonal bases).     If a  summation of 

sinusoids is chosen as  a basis  to represent the measurements,  then  a  set of 

at most N cosine and sine basis vector frequencies is possible from 2N data 

points.    Thus the model becomes: 

N 

^[aicos(2jcfitB) + bisin(27cfitm)] = xm       m = i,2...2N 3.6 

The  objective  in  signal  processing  is  to  identify  the aj and bj   coefficients 

such   that  the   summation-of-sinusoids   model   produces   the   "best"   (such   as 

mean square error)  fit to the measurements.     Also,  as of this time the 

frequencies   in   Equation   3.6   are  as-yet  undefined. 

Select  least  squares   as  the   method  for  identifying  the  coefficient  column 

vector c={a b}T where a={ai a2   aN}T and b={bi b2  bN}T (where      is 

the  transform   operator).     Proceed  by   multiplying  Equation   3.6  by   each 
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cosine   and   sine  basis   vector   and   integrating   (or   equivalently,   summing 

for this discrete representation) over the time spanned by m.     This results 

in  2N  equations.     Sample equations for coefficients ai and bi   become: 

N     2N 

i=l m =1 

N     2N 2N 

blSXC°^27rflt- ^Si^2%fi^ > = 5X COS(27rfltm ) 3-?a 

i=l m =1 m =1 

m   =1,2...2N, 1=1,2...N 

and 

N    2N 

a,XXsin(2,rfit»)C0s(2'rfit'») + 
i=l m=l 

N    2N 2N 

b]j|)sin(2jrf1tB)an(2j[fit111) = Jx>(2itf1tJ 3.7b 
j=l m=l m=l 

m = l,2...2N, 1 = 1.2...N 

At this  point we  can  rewrite Equation  3.7  more  compactly  in  linear  algebra 

form   showing   dimensions: 

A c        =d 3.8 
2Nx2N 2Nxl      2Nxl 

where bold  upper  case letters  denote  a  matrix  and  bold  lower case  letters 

denote a column vector.    The vector c was defined above.     Elements in the 

basis  matrix A   are given by: 
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f 2N 

\ = 

1 = 1,...N,  i = l,...N ^cos(2jcf1tB)cos(2ÄfitB) 

2N 

]£ cos(27if, tm )sin(2jrf j tB) 
m=-l 
2N 

^sin(2irf1tm)cos(27üfitB) 

2N 

^sin(2jcf,tB)sin(2jcfitm)     I = N + I,...2N, i = N + i,...2N 

1 = 1,...N,  i=N + l,...2N 

1 = N + 1,...2N,  i = l,...N 
3.9 

.m=l 

while elements in the data vector d   are defined as: 

r 2N 

d,= 

£xm cos(2jcf,tB) 
m=l 
2N 

£xmsin(2rcf,tm) 

m = l,...2N,  1 = 1,...N 

!=!,... 2N,  1 = N + 1,...2N 

3.10 

.m*=l 

The next and last necessary step  is  to complete the definition of the basis 

vector  set  by  defining  the  frequencies.     There  is  actually  complete 

freedom in doing so;    for example, if the signal was suspected to be 

comprised  of R known frequencies  (a good example is  the set of 

analytically-available   modal   frequencies   representing   the   response   of   a 

simply  supported  beam),  then  that  set of frequencies  would  be  the  most 

logical  and  appropriate choice  to  define the basis  vectors.     Choosing  such  a 

particular  set  of frequencies  would  define  a parametric  model.     While this 

set   would   be   the   most  natural   engineering   choice   for   defining   the  basis 

for  this  problem,  it  could  in  general  result  in  a fully-populated  basis 

matrix  A.     This would  at best require maximum computational  time to  solve 

the   problem   (either   using   Gaussian   elimination   directly   or   the   normal 
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form  for  least  squares),  and  at  worst  it  could  introduce  ill-conditioning  or 

rank   deficiency   if  any  frequencies   are  too   close   together   (perhaps 

requiring  the  pseudo-inverse  to   solve  for  the  best  coefficient  vector  c). 

More  often  the  set  of frequencies  contained  in  the  measurements  is  not 

known,  nor  if there  even  are  discrete  frequencies.     This  is  precisely  the 

application for which Fourier Series  is best suited.     The theory of Fourier 

Series is a well-developed field, and rightfully so - the method has 

powerful  advantages that are too long to list here.     The discussion in  this 

section   presents   one   interpretation   of  Fourier   Series   modeling   that   lays 

the  foundation   for   development   and   understanding   of  the   new   Harmonic 

Phase  Tracking   technique   in   the   next   Chapter. 

Consider  the  frequency  selection   task  from   the  perspective  of  a  numerical 

analyst  whose  goal   is  to  minimize  the  amount  of computational  resources 

necessary to fit a model (here, a summation of sinusoids) to data.    Indeed, 

the basis vectors in the Fourier Series model  are the most optimal  set from 

this purely computational point of view.     Specifically,  the Fourier 

frequency  set requires  the  least  amount of computations  to  solve  for  c 

because it results  in  a diagonal  A   matrix   with   the  ultimate  simplicity   that 

A=al where a=^/2 and I  is the identity matrix.    Since the resulting 

diagonal  matrix  has  no  off-diagonal  terms,  all  the  basis  vectors  are 

orthogonal,  and  2N  scalar  equations  are  appropriate  to  calculate the  N  aj 

and N bj  coefficients.     There  are  many  other  advantages  of this  Fourier 
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orthonormal basis vector set that have been used to great advantage in 

understanding the behavior of Fourier Series (e.g., Parsevals Theorem) 

but   are   not  relevant  here. 

Exactly  what values  are in  this  set of Fourier frequencies that yields  a 

diagonal   A   matrix with constant values?    It is instructive to work for the 

moment  with  the reciprocal  of frequency,  namely  the  period  (Pi), for this 

discussion.     Fourier defined  the period  for  the first basis  vector pair 

(cosine and sine) equal to the length of the data record: Pi^2N.    The next 

step was to identify P2 such that the A12 and Ai(N+l)  matrix terms would be 

zero.    This is accomplished by defining P2=Pl/2» or equivalently, f2=2fi. 

Continuing,   the  complete  set  of Fourier  orthogonal   periods   and 

frequencies   are  defined   as   integer  divisors  or  multiples  of the 

fundamental:   Pi=Pl/i and fi=ifi,   respectively. 

To   a   structural   engineer,   this   Fourier   set   of  integer  harmonic   periods 

corresponds   to   the   engineering   concept   of  orthogonal   mode   shapes   for   a 

simply  supported  beam.     In  this  application,  the  Fourier  Series  would 

coincidentally   also   represent   a   natural   engineering   basis   for   that 

problem. 

With  this  Fourier Series  set of frequencies  so  defined,  we can  see that  they 

are spaced at intervals of fi^/T-    This is the second interpretation of the 

implicit resolution  of any spectrum based on  a FFT:     sinusoids spaced closer 

than   1/T   cannot   be   resolved   into   uncorrelated   spectral   ordinates. 
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But there is a related limitation of Fourier Series that is often not 

appreciated.     The orthogonal nature of the Fourier basis  vector set does 

insure that, for a sinusoid with a frequency fi  that exactly matches  a 

frequency  in the set, only  the a* and bi  Fourier  coefficients  at  that  one 

frequency   will   have   non-zero   values   (assuming   proper   sampling   and   no 

noise).     This can be seen by  substituting  a constant amplitude  sinusoid 

defined by xm = akcos(27lfktm)+bksin(27tfktm) in Equation 3.10 and noting 

that only the dk   (corresponding  to  ak) and dN+k   (corresponding  to  bk) 

entries in the data vector will be non zero.    In some very isolated cases, 

like modeling  the response of a  simply  supported  beam,  this  exact 

frequency   matching   may   occur. 

But the  likelihood  of the  signal  frequency  exactly  matching  one  of the 

Fourier  Series  frequencies  is   actually  very  remote;     more  often  the 

frequencies   in   the   signal   will   not   exactly   match   the  Fourier   Series 

frequencies.     When  confronted  with   this   more  common  situation,   it  is   a 

common   misperception   that  the  energy  in   a  sinusoidal   signal   is 

proportionally   split   solely   between   the   two   Fourier   basis   vectors   that 

bound the signal frequency.    This is not true.    While most of the energy 

will  be  accounted  for by  the  bounding  basis  vectors,  a  sizable proportion 

will be spread to  all  the basis  vectors since they  are  all correlated  to  the 

non-integer   signal   period.      Furthermore,   there  is   false   comfort   in   viewing 

the spectrum   and   concluding  by   inspection   that  the  energy   spread,   while 

non-negligible,   is  not  important.     In  contrast,  the  adjacent  amplitudes (q, 

i=k±2)   are roughly  the  same  order  of magnitude  as  the  bounding  Fourier 
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amplitudes.    This is illustrated in Figure 3.1 for two  128-point FFTs (with 

Hamming  and  boxcar windows)  applied  to  a unit  amplitude  sinusoid  with  a 

non-integer period  of  128/l0.667- 

8 10 12 
Fourier Bin 

14 16 

Figure  3.1      Spreading   of  Fourier   Amplitudes   with   non-integer  Harmonic 

Signal ( o  = Hamming window; --*-- = boxcar window;  .... = exact) 

Several   insightful   observations   regarding   Fourier   Series   can   be   made 

from  Figure  3.1.     First,  note  that  the  amplitudes  are  significant for  adjacent 

bins  both  smaller  and  larger  than   the  bounding  bin  numbers  of   10   and   11 

(note that the kth  Fourier  frequency  can  also  be  labeled  as  bin  number k 

where  bin   k   corresponds   to   discrete  frequency   k/j  and period T/k;    when 

viewed   in  this   "bin  space"   k  represents  the number of cycles  of the 

sinusoid that occur in the FFT interval).    This amplitude  spread  is  "wider" 
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than   the   corresponding   spread   evident   from   the   amplitude-squared 

energy in the spectrum. 

A   straightforward   explanation  for  this   spread  of energy  comes  from  an 

examination of the Fourier components.     Consider the sinusoid  used  in 

Figure  3.1  where  the non-integer period  was  not near  one  of the Fourier 

harmonics.  It is  impossible for the transform of this  sinusoid  to  be 

represented   with   significant   amplitudes   only   at  the   two   adjacent  Fourier 

bins  since the  sum  of these two  component  sinusoids  would  necessarily  be 

a beating  signal  with  a  non-constant  amplitude.     This  is  illustrated  in 

Figure 3.2 for the same signal used in Figure 3.1.    The top subfigure is the 

original  sinusoid;     the  middle  subfigure  is  the  [beating]   signal  formed by 

the   inverse  transform  using   only  the  two  Fourier  harmonics   at  the 

adjacent  bins;   and   the   lower   subfigure   is   the   difference   (remainder) 

between the first two  signals  (all  subfigures use the same scale).     Since 

Parseval's   theorem   requires   energy   proportionality   between   the   time   and 

frequency   domain   representations,   the   size   of   the   remainder   time   domain 

signal   does   result   in   significant   frequency   domain   energy   (at   harmonics 

other than the adjacent two Fourier bins).     Note also that application of a 

spectral  window  (Hamming,  etc.)  would  act to  suppress the ends  of this 

remainder   time   series   component,   thereby   reducing   much   of   the   variance 

in  both  the  time  and  frequency  domains. 
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a.  Original Non-Integer-Period Cosinusoid 

0 20 40 60 80 100       120 
b. Inverse Fourier Transform of Adjacent Harmonics 

0 20 40 60 80 100        120 
c. Remainder term 

0 20 40 60 80 100       120 
Time Index 

Figure  3.2     Example  Decomposition   of Inverse Fourier 

Transform   of  Non-Integer-Period   Sinusoid   Used   in  Figure  3.1 
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Second,  note in Figure 3.1  that the Hamming window does result in 

significantly   lower   amplitudes   away  from the major bandwidth, but it is 

effectively  wider  than  the  boxcar  window   inside   the  bandwidth   between 

bins   10  and   11   (which illustrates  the fact that each window has its 

advantages  and  disadvantages).     Note  also  that  this  example  clearly 

illustrates  the effect of a window  taper in the time  domain,  which 

artificially   suppresses   much   of  the   residual   signal   variance,   thereby 

reducing  the leakage  according  to Parseval's Theorem.     What is  not so 

readily observed in Figure 3.1   is that the spread of the Fourier Series 

actually   produced   aliasing   (caused  by   the   discontinuity   between   the 

adjacent  periodic   sequences   then   the   folding   at   the   Nyquist  frequency) 

that   further   complicates   interpretation   of  any   windowed   transform   as   well 

as   any   subsequent   spectrum. 

Let us  also recognize that such  a sinusoidal  signal  with  a frequency that is 

a   "non-integer"   fraction  of  the  FFT   length   can  be  analytically  described 

using  just  three  parameters   (or  degrees   of  freedom):   cosine   amplitude, 

sine  amplitude,   and   frequency.     However,   because  of  the  spread   inherent 

in  the Fourier coefficients  it  will  require  all  of the 2N  Fourier  series 

coefficients to model  it;     while the basis matrix  is diagonal  and hence 

"efficient"   in   terms   of computational   resources,   the  right   hand   side  data 

vector  d has  all  non-zero  entries,  leading  to  all   non-zero  coefficients  in  a 

and b.     This  is hardly an  "efficient"  mapping of such  a simple signal. 
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Finally,   it  is  instructive  to  examine  confidence  limits  for  spectral 

ordinates.     It  is  conventionally  assumed   that  since  the  equivalent  signal 

phases   are   arbitrary   and   independent   at   each   Fourier   frequency,   then   the 

corresponding   "raw"   aj and bi   coefficients   are   Gaussian   distributed  for 

each  independently  analyzed  FFT realization  of the  time history.     Second,  it 

is known that a Gaussian input to a linear system produces  a Gaussian 

output.     Since the Fourier  transform  is  a linear operator,  then  the real  and 

imaginary   transforms   are  likewise  Gaussian   distributed.     The  spectral 

estimates  are then  the sum  of two squared  Gaussian variables  (S^a^+bj2), 

which  is  described  by  a  Chi-squared  distribution  with  2  (for  the  double 

sum)  degrees  of freedom  (DOF).     Unfortunately,  a  Chi-squared   variable 

with 2 DOF has large uncertainty,  so  a raw  spectral  estimate based  on one 

transform  is  quantitatively poor.     This  explains  the need for the  use  of the 

Expected Value Operator in Equation 3.1   (i.e.,  it is not consistent to assume 

that  increasing  the  length   of the  FFT  places   more  component  cycles  into 

the  FFT   integration   and   that  such  a  transform  is   therefore  statistically 

more  accurate  than  a transform  based  on  a  shorter FFT).     This  explains  in 

mathematical   terms   the   need   for   ensemble   averaging   to   confidently 

describe   a  spectrum.     It  is   well-known   that  the  normalized  uncertainty  for 

spectral   estimates   is   given   the   Chi-squared   distribution   and   the   number   of 

independent   "raw"    transforms   (N): 

£(S./S.) = ^ 1-0.1....N/2 3.11 
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For  example,   100  ensemble  averages  would  yield  reasonable ±10   percent 

uncertainty  limits  for  the  spectrum,  while   1   (no  average)  would  yield   100 

percent uncertainty  limits.       Collecting  this  much wave  data is  sometimes 

possible  in   a  laboratory  setting   (subject  to  reflections  and   other   "tank 

buildup"  phenomena).     As discussed  in  the  next Chapter,  to  achieve  this 

accuracy  an  ocean  wave  field  would have to be  stationary  for many hours, 

which is most often not the case. 

Now we can return to Equation  3.1   and summarize what to expect when  it 

or any of the other traditional  methods is used to produce a spectrum from 

a  properly  sampled  wave  or  similar  time  history: 

• a set of windowed FFTs will  generally resolve the distribution of 

variance   versus   frequency   in   a   statistically   averaged   sense. 

• however,   a   large   number   of   independent   transform   estimates   are 

required   to   yield   reasonable   error   bounds   for   that   variance 

distribution,   requiring   long-term   stationarity   in   the   signal. 

• if discrete  sinusoids   are  present,   they   cannot  be  resolved   if closer 

than   1/T   in frequency where T is the length of the ITT. 

sinusoids   with   non-integer   multiples   of  T   produce   significant 

smearing   ("leakage")   and   is   difficult  to   identify  and  resolve. 

• this   smearing   also   makes   identification   of  nonstationarities   (like 

changing   amplitude,   phase,   or   frequency)   difficult. 

• the FFT is a non optimum mapping  (3  to 2N parameters) for a simple 

sinusoid  when  the FFT  segment length  divided  by  the  signal  period 

is   not   an   integer. 
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Only  now,  having   completed  this  review   of traditional   spectral   analysis, 

can  a summary  quote from Kay  (1988, p6)  be fully appreciated: 

Spectral estimation is a preliminary   data   analysis   tool.    A spectral 

estimate should not be used to answer specific  questions about the 

data,  such as whether a  resonance is present,  but only to  suggest 

possible    hypotheses. 

This conclusion also applies to the study of ocean waves and is reaffirmed 

by a quote from Goda (1985, p213): 

Of course,   we  are always free  to  analyze  an  irregular time-varying 

function     in the form of a Fourier series without attaching 

any   particular   physical   meaning. 

The  purpose  of this   section  has  been  to   interpret  Fourier  Series  from  one 

point of view  and  illustrate some of its weaknesses  as they  apply to  the 

study of ocean waves in the next section and the next Chapter.    This has 

been   done  with   the  full   realization   and   appreciation   that  for   general 

signal   analysis   applications   the   overall   strengths   of  Fourier   analysis   far 

outweigh   these   weaknesses. 
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3.3        Suhspace Estimation Techniques 

The  techniques  in  the  previous  section  can  be  applied  regardless  of the 

signal  characteristics  as long  as  it is  stationary.     The penalty for  that 

universality is a loss of resolution and any "local" behavior as a result of 

the  ensemble  averaging.     In  this   section   an   entirely  different  family  of 

techniques  is  described.     These  techniques   are  classified  as   "high 

resolution"   parameter   estimation   (rather   than   spectral   estimation) 

techniques  because they  assume  a signal  model  defined  as  a small  and 

known  number  of sinusoids  in  the  presence  of white noise,   and  they 

proceed  to  estimate that precise set of unknown parameters.     This  is  quite 

restrictive   compared   to   the   spectral   methods,   but  when   applied   properly 

these   subspace   techniques   are   very   powerful. 

In a sense, the foundation for all  of these methods is the following key 

theorem   (Roy,   1987): 

Theorem 3.1  (Wold's Predictive Decomposition  -  Wold,  1938). A  (weakly) 

stationary  process  is  decomposable   into  two   (weakly)  stationary  processes 

orthogonal  to  each  other,   s(t)ln(t): 

x(t)=s(t) + n(t) 
such   that 

n(t)= ^c(t-i)^U) 
i=0 
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where  c  denotes  coefficients  in  a  moving  average  description  of n(t),   the 

innovations   %  are  orthonormal,   and s(t)  is deterministic while  n(t)  is 

completely    non    deterministic. 

This  theorem says that it is  always possible to decompose a stationary 

realization  into  the  sum  of a  deterministic  (s)  and  a  non  deterministic  (n) 

component,  and  that the  two  spaces  will  be orthogonal.     The  theorem has 

been  extended  since  then  to  allow  for  components  of the  non  deterministic 

space  in  the  deterministic  space  (trading  subspaces)  and  visa  versa.     (This 

concept has   more  recently  been  made  practical   to   apply  by  the  availability 

of singular  value  decomposition,  as  will  be  shown  later in  this  Chapter.) 

The need  for  such  extensions  is  seen,  for  example,  in  interpreting  a 

Fourier   Spectrum   (i.e.,   Series)   and   arbitrarily   defining   some   components 

as   "the  signal"   with   the  rest  (including  some  small   and  perhaps  overlooked 

deterministic   signal   components)   automatically   defined   to   be   "noise" 

components.      All   of  the   subspace   techniques   manipulate  these   two   spaces 

in   various   ways. 

One  way  to  understand  these  spaces  it  to  examine  a  deterministic  signal 

comprised   of   one   sinusoid   with   constant   (unit)   amplitude   and   frequency 

and   random   phase.      The   (auto)covariance   vector   versus   lag   for   this   signal 

is defined  as: 

cxx(T)aE[x(t)x(t+T)J 3.12 
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where E[ ]  is the expected  value operator.     Substitute a unit amplitude 

sinusoid   x(t)=cos(27tf0t+<t>)  with arbitrary phase to find: 

cxx(t)=cos(2jcf0x) 3.13 

for all t.      For a discrete time signal Equation 3.13 becomes simply 

Cxx(T   )=cos(2rcf0T   ) 3.14 
m m 

for T    =mAt and m=l,2,....M.    Now, construct a [true] covariance matrix by 
m 

assembling  columns  defined  as  cyclically  shifted     cxx: 

C.„ = 

cxx(°) ey^-» 
cxx(-2)      • •       cxx(~M ) 

cxx<M 
cxx(°) cxx(_1)      • •    cxx(~M + 1> 

cxx(2) cxx<M cxx(°)    ; •   cxx("M +2> 

Cxx(M) Cxx(M  -1) Cxx(M -2)    . •         cxx(°) 

3.15 

For a harmonic  signal  without noise CXX(-T)=CXX(T) and the matrix is 

symmetric  (for  infinite  available  data).     In  this  idealized  case,  since  this 

matrix  uses just  one  column  basis  vector  to  construct  every  other  column 

by simple shifting,  it is  a rank   1   matrix.     If a standard singular value 

decomposition (e.g., Leon,  1994) of Cxx was done defined by 

U23VT-jvd(Cxx) 

results (and  simple inspection  of the Cxx   matrix)  show: 

• one non zero singular value oi=In, 

• the  first left singular vector ui =cxx   (that is,  column   1),  and 

• the first right  singular  vector  vj = cxx
T  (that is, the top row). 

3.16 
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Thus,  in  this  case, 

Cxx(t)=a1u1v1
T 3.17 

The  fact  that  the rank  of this  covariance  matrix  is  independent  of the  size 

of the matrix CXx    is the most important fact exploited by subspace 

methodologies.     As  this  first simple  example  illustrated,  finding  the  rank  of 

Cxx   was  equivalent  to  finding  the number  of components  in  the  signal. 

Now, add two real world complications to this idealized example. First,  add 

noise to  the unit  amplitude sinusoidal  signal  so  that x(t)ss(t)+n(t)    where 

s(t)=cos(2rcf0t+4>).    Second, assume a finite length of measurements of x(t). 

These  conditions  affect  Cxx  in the following way: 

1.     For  this  special  case  (even  assuming  infinite  data length),   Cxx is 

an  estimate  of the  true covariance  matrix   C^ of the signal 

summed   with   the   covariance   matrix   C      for the noise: mi 

C    =E[x(t)x(t+<c)]=E[(s(t)+n(t))(s(t+T)+n(t+T))] 
XX 

=E[s(t)s(t+x)]+E[s(t)n(t+x)]+E[s(t+t)n(t)]+E[n(t)n(t+t)] 

=E[s(t)s(t+x)]+E[n(t)n(t+T)] 

C    =C    +C 3.18 xx       xx        nn 

Note that if the signal consisted of two sinusoids si(t) and S2(t) at 

arbitrary   frequencies,   then   the   covariance   would   not   be   a   simple 

sum  of the  two   component  covariance  functions  because  if the 
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sinusoids   are  not  orthogonal   then  the  cross  terms  would 

contribute.   This   complicates   the   covariance   function   for   multi- 

component    signals. 

2.    Only the estimate C^ of C^ can be constructed  from the data 

because of the stochastic noise matrix  and the fact that  the true 

covariance matrix cannot be found due to the finite length of data. 

The   subspace   methods  were  first   developed   for   array   directional   resolution 

applications.     In these problems  the signal  is  known to be a sinusoid  and 

assumed  to  be planar so  that any phase difference between  sensors  is  due 

solely  to  their  spatial  separation.     For these  problems  the previous 

covariance   matrix   is   approximated   by   a   "sample"   covariance   matrix 

defined   directly   from   the   measurements   by   ensemble   averaging   "raw" 

matrices: 
N 

C     El/TyE[x.X
Tl 3.19 XX /N JLmi      L      1     1 J 

i=l 

where  XJ   is   a  zero-mean,   finite  length  vector  from   the  measurement 

vector  x with  the same length  as needed for the covariance matrix.     To 

illustrate   this,   return   to   the   previous   single   sinusoid   deterministic 

example   and   replace   the  covariance   matrix   with   this   sample   covariance 

matrix.    Now, each column and row has two basis vectors - one related to 

acos(27lf0Tm) and another related to ßsin(27Cf0tm), where a and ß are 

functions  of the phase angle <(>. 

49 



Without  added  noise,  a  singular  value  decomposition  of this   illustrative 

sample  covariance  would  return   two   non-zero   singular  values,   and   two   left 

and  two  right  singular  vectors.     Thus,  the  sample  covariance  matrix   serves 

the  same  purpose  as  the  exact  covariance  matrix  but  with  double  the  rank. 

With  any  amount of added  noise,  the rank  of the  sample covariance  matrix 

becomes full because the noise covariance in Equation  3.19 is full  rank. 

For this  more typical  case,  the modified procedure starts  with  inspection of 

the  singular  values.     In  many  cases,   the  singular  values  (from  the 

diagonal  of matrix  E) will all be approximately the same (at least in order 

of magnitude)   after  the  first  r  values: 

^kk^NN' 2r+l<k<N 3.20 

These  are  now  arbitrarily  defined  to  be  noise  contributions.     Thus,  the 

rank of the matrix  is again concluded  to be 2r,  which in turn defines  r 

component sinusoids.     Of course, this  is  a non  unique definition  if there is 

continual   rather   than   an   obvious   demarcation   in   the   set   of   singular 

values. 

Having   determined   the   number  of components   assumed   to  be   in   the   signal, 

most of the methods then define one or both of the signal  and noise 

subspaces   (H and E,   respectively)   using   left   singular   (column)   vectors: 

H=K      U2      -     U2r] 3-21 
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and 

E = [u u •••   u 3.22 
L    2r+l 2r+2 Nj 

It is  a property  of the singular value decomposition  that these spaces  are 

orthogonal.    But also note that neither H nor E   are unique,  even when the 

noise is  very small  and does not significantly  interfere with the 

predominant  singular  vectors.     For  example,  for  a  signal  consisting  of two 

sinusoids,  the left singular vectors  in H  would look like a pair of in- and 

out-of-phase   modulated   (beating)   basis   vectors   rather   than   the   "expected" 

(He) space consisting of two cosines and two sines;    this is because these 

two  left  (with  the  two  right)  singular  vectors  define  the  best rank-two 

approximation  to the original  covariance matrix  (see Equation  3.17).        This 

is illustrated  in Figure 3.3.     Although H  and He   are different,  they  are 

linearly   dependent   (as   seen  by   the   direct   algebraic   trigonometric 

relationship  between  the  vectors  in  H and He  in this two sinusoid 

example).     Therefore both  spaces  are orthogonal  to E. 
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Two Unit Amp. Sinusoids, bins 11 & 13, Phases 90 & 72 
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Figure 3.3     Example of Singular Value Vectors  for a Deterministic 

Signal  Comprised of Two  Sinusoids 
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The next task for the subspace methods is to estimate the signal 

frequencies.     This  is done in  a variety of very different ways  among  the 

methods. 

For   example,   there   are   straightforward   search   techniques   such   as   with   the 

MUSIC  algorithm,  which  was first developed in  1979 and is still considered 

best for general applications (Schmidt,  1979;  see also Roy,  1987  and Naidu, 

1996).    This technique is based on the fact that a sinusoid with a trial 

frequency  that  matches  one  of the  true  signal  frequencies  will  be  in  the 

signal  space,   and  therefore by definition  it  will  be  orthogonal   to  the  entire 

noise space.       MUSIC assumes that for a sinusoidal  vector at trial frequency 

fk   described  by  either 

ei = [l cos(27tfkAt) ••• cos(27tfk(L-l)At)] 3.23a 

or 

ek =[0 sin(27rfkAt) ••• sin(2«fk(L-l)At)] 3.23b 

that if fk   is  equal   to   a  true  frequency  then  the  subspace  orthogonality 

condition   requires   that 

ETek=0 3.24 

If noise is present such that only estimates of H and E  are available (H   and 

E,  respectively),  then   a  modified  criterion   is  needed: 

eTEETe   =   local   minimum 3.25 
k k 

or,   as   usually   implemented,   define   a   reciprocal   function   and   equivalently 

search  for  maxima  of the   "null"   function 
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S(f     ) =  3TX  3"26a 

or 

k      eTEETe 

S(f   )=jj^ 3-26b 

E e 
II k 2 

where II ll2 is the 2-norm of the vector.    This is loosely referred to as a 

"spectrum"   even   though   it  does   not  represent  the  distribution   of  variance 

with frequency.     A  fine mesh of trial  sinusoidal  ek   vectors   are   generated 

and used to calculate  S   (this  function  will  have only  so  much   inherent 

resolution  but  it can  be  calculated  at  any  desired  frequency  interval).     By 

inspection,  the largest r peaks  of  S  are the best estimates of the true 

frequencies   present   in   the   underlying   signal. 

Other  subspace  methods   include:   Capon,  Prony,  Pisarenko,   and   ESPRIT, 

with   many   different   implementations   for   each   method   (motivated   by 

different   assumptions   about   the   noise  characteristics   or   how   well   the 

number  of components  in  the  signal  is  known).     The  subspace  rotation 

approach   used   in   the   ESPRIT   techniques   is   particularly   interesting   (Roy, 

1987).    ESPRIT offers significant advantages over MUSIC for some 

applications. 

Before   summarizing   the   practical   issues   regarding   the   use   and 

interpretation  of these  subspace  methods,   it  would  be  useful  to  contrast 

their   frequency   resolution   to   the   "traditional"   spectral   analysis 
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techniques.      Unfortunately,   there   are   no   exact   analytical   expressions   for 

the  variance  of the  frequency  estimates  from  these  methods  (Kay,   1988). 

But for  our purposes  they  are  not necessary,  since  these  methods  show 

dramatically   better   resolution   regarding   frequency   estimation   than   the 

traditional    techniques. 

With   such   dramatically-improved   performance   in   resolution,   why 

wouldn't one of these subspace methods like MUSIC or ESPRIT always be 

used  in  signal  processing?     Do  they  have  assumptions  about the  signal 

and/or   noise  that   limit  their  general   applicability?   (Note   that   this 

question  ties back directly to ocean  wave issues raised back  in Chapter 2.) 

To  start  with,  these  methods  universally  assume  that the  signal  is  known  to 

be a summation of a [small] number of sinusoids.    Thus, it can be 

immediately stated  that it is  not appropriate to  apply them  to  any  other 

physical    situation. 

Second,  the number of sinusoids must be  "small".    While this term is never 

quantified,   none   of  the   dissertations   or   texts   referenced   in   this   review 

ever considered more than a half dozen at most.    This is probably due to the 

fact  that  the  main  application   for  these  techniques   is  estimating   the  best 

direction-of-arrival   of  radar   signal   on   a   linear   array,   and   the   number   of 

radar sources  (targets)  is  typically  small  in  those  applications.     The use  of 

these  methods  for  other  situations  where  there  might  be  three  or  more 
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dozen sinusoidal  signals  (say,  in  the general  case of an ocean wave field) is 

not strictly beyond  their capabilities  in  the presence of no  noise, but it is 

without precedent.     The use of these techniques for noisy  signals  with  a 

large   number   of  sinusoids   is   questionable. 

Knowledge of the spectral  distribution of the noise is  crucial  to  many of 

the  methods   that  rely   on  finding   eigenvalues   of  the   sample   covariance 

matrix  (such  as Pisarenko decomposition).     Consider the case with  a known 

signal and noise:    if the true covariance matrix Cxx  given in  Equation  3.15 

and the ek  vectors  from Equation  3.23  are defined using the exact 

frequencies   and   known   number   of  signals   (r),   then 

 H 3.27 
k    k    k 

C     =YPee! 
xx      X-i    k    k 

k=l 

where   P  is the power for each signal and    H   is  the  Hermitian   operator 

(necessary  if the  complex  definition  of ek={exp(j2jtft)} is used).    An 

eigendecomposition   of   Cxx  in terms of eigenvalues \ and basis vectors ^ 

would   yield 

c„-i»A«; 3-28 
k=l 

Note that the rank  is  still r.     When uncorrelated  additive noise is  present, it 

can   be   decomposed   similarly: 

C     =YA 5 E nn       l—i    k    k 
3.28 

"k    k    k 
k=l 
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But here, the rank is N, equal to the length of the data vector.    Using 

Equation   3.18,  one  analytical  form  for  the  estimated  covariance  matrix 

would be  the sum  of two  matrices  with  different ranks 

c=-iwz+iw; 3-29 
k=l k=l 

If an  eigendecomposition  was  done  directly  on  this  estimated  matrix   C^ , 

it,  too,  would yield  a second analytical form consisting  of a full  rank 

summation   of  eigenvalues   and   basis   vectors 

C     =yvvvH 3.30 
xx      i-i^Y.   k   k 

k=l 

Once the rank r of the signal  subspace is known or estimated, Equation 3.30 

is  separated  into  two  summations: 

r N 

C      = Y Y  V  VH +   y   Y  V  VH 3.31 
n:      ^Ak   k   k *-J   KY.   k   k 

k=l k=r+l 

Many of the subspace techniques  need  to relate Equations  3.29  and 3.31   to 

estimate   the  signal   eigenvalues   t\, k=l,....r,  and in turn the signal 

frequencies.     That is not possible in the present form.     Two additional steps 

are required.     The first uses the known fact that since the two  signal 

matrices  defined  by  the first  summations  in  Equations  3.29  and  3.31   both 

span   the   same   (signal)   subspace,   the  matrices   are  interchangeable.     The 

second  step  is  to  take advantage of the fact that any  orthonormal  matrix 

times  its   Hermitian   yields  the  identity  matrix.     This  can  be  incorporated 

here -    but only if the noise is assumed to be white noise such that the 
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noise basis  vectors can be moved outside the summation.     The noise 

covariance  matrix  can  then  be  simplified   to 

C    =CT
2
TH S

H 

'"mi £-1   k   k 
k-1 

N 
3.32 

so2 Jv. vH 
k   k 

k=l 

Substitute both of these changes into Equation  3.31   to yield 

c„=X(X„+oJ)V;+°aiv1v: 3.33 
k-1 k=r+l 

Comparing   the  true  and   estimated  signal  eigenvalues  in  Equations   3.28   and 

Equation  3.33   shows  that  the  estimated  eigenvalues   Xk  are larger than the 

true  eigenvalues  %k by <J2 

Xk = Xk+G2,       k=l, .... r 3.34 

Of course, Equation 3.34 can then be used to improve the estimated 

eigenvalues,  but  this  correction  is  only  as  good  as  the  white  noise 

assumption  used  to   generate  this  Equation.     Generally   speaking,   all   of the 

subspace   methods   require   either   a  priori  knowledge  of the  noise 

covariance   matrix   or   are  forced  to   assume  that  it  is  uncorrelated   white 

noise.     This  is not always  appropriate,  so  it can  introduce error into 

estimates   made   using   these   techniques. 

But  what  about  other  subspace  techniques  that  do  not  rely  on  eigenvalue 

estimates?    One common problem is the need to a priori estimate the rank 

of the signal  subspace,  and  its  effect on  the results  varies  among  the 

methods.     This  is  straightforward   if there  is   a  sharp  demarcation  in  the 
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Singular values, but that is often not the case.    There has been a great deal 

of  attention   in   the   signal   processing   community   directed   towards 

quantifying   techniques   to   simply   find   the  signal   subspace  rank,   but   none 

are   yet   considered   "definitive." 

Some  of  the  techniques  require  constant  amplitude  sinusoids,   and,   for 

array   direction   finding   applications,   arrays   with   known   and   constant 

spacing.     Other  methods  require  that  the  sample  covariance  matrix  be 

Toeplitz,  which  is  typically  violated  when  using  finite  lengths  of data  (this 

requirement  spawned   sub   methods   to   force   symmetry   or  use   singular 

value   decomposition   or   other   techniques   to   improve   the   covariance 

matrix).     The  powerful  ESPRIT  technique  assumes  low  rank,  planar, 

independent   narrowband   signals   of   known   center   frequency,   which   can 

be   restrictive. 

In   summary,   the   new   subspace   techniques   have   clearly   demonstrated 

higher   resolution   capabilities   as   compared   to   traditional   spectral   analysis 

techniques.      Many   of them   rely  directly  on   the  orthogonality   of  assumed 

signal   and   noise  subspaces,   which   is   itself subjective,   while  others 

continue   on   with   additional   mappings   (such   as   the   eigenvalue   estimation 

concept   that   make   it   impossible   to   analytically   quantify   the 

uncertainties).     But  the  price  for  the  improved   resolution  from   these 

techniques  is  high  in  terms  of the restriction  that  the  signal  consist  of a 

small   number   of   sinusoids,   usually   with   uncorrelated   and   additive   white 

noise. 

59 



^.4       Wavplpt   and    Cither   Local   Techniques 

Wavelets   offer   a   useful   alternative   for   some   signal   processing   applications 

so  their properties  are  briefly  described  in  this  section.     Three  other 

studies   of  "local"   ocean   wave  properties   using   alternative   techniques   are 

reviewed   also. 

Before  considering   wavelet   analysis,   it   is   instructive  to   summarize  Fourier 

Series   analysis   as   modeling   with   a  superposition   of  constant  parameter 

orthogonal   sinusoids.      The   essential   difference   between   Fourier   and 

wavelet  analysis   is   that  wavelets   incorporate   a   time-   and  frequency- 

dependent  envelope  (like  a  spectral  window)  to  each  of the basis vectors 

(which   are   not   typically   sinusoids),   whereas   [unwindowed]   Fourier   basis 

vectors   are   constant   amplitude   throughout   the   segment   being   analyzed. 

These   wavelet  envelopes   vary   with   frequency   to   retain   a  constant 

"volume"  of each basis  vector in  the time-frequency  plane.     To  aid  in 

visualizing   wavelets,   imagine   a   "characteristic"   wavelet  defined   as   a 

constant   parameter   sinusoid   modulated   by   a   vary   narrow   Gaussian   window 

in time such  that their product yields only  a half dozen cycles of the 

sinusoid  before  the  amplitude  is  effectively  zero.     Now   maintain   this  "half 

dozen  cycles"   for  each  sinusoidal  basis  vector;     low  frequency  sinusoids 

will   have   relatively   wide   envelopes   while   high   frequency   sinusoids   will 

have   very   narrow   envelopes.      Typically,   the   "constant   volume" 

requirement   also   results   in   wavelet   amplitudes   that   are  likewise 

proportional   to   the   frequency.      In   application   these   characteristic 
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wavelets are centered at a time step of interest and then fitted to the signal 

just like with Fourier Series to yield a set of "participation factors".    The 

center time is  shifted by a small  amount and  the analysis  is repeated. 

Ultimately,  these  factors  are  displayed  versus  time and  frequency  to  yield  a 

"time-frequency"   distribution.      There   are   many   implementations   of 

wavelet  basis  vectors  and  modulating  envelopes.     Wang  (1995)  presents  a 

very readable review  of wavelet analysis;  see also Chu  (1996)  and  Donelan, 

et al (1996) for applications to ocean waves. 

Note that the wavelet basis vectors are only non zero for a very limited 

number of cycles (a half dozen  in this example).    This makes wavelet 

analysis   ideally   suited   for  signals   that   exhibit  sharp   discontinuities; 

indeed,   wavelets   are  intended  primarily  for  detection  of this  and   similar 

events.     But a less  ideal  characteristic of wavelets is that they exhibit 

increasing   passband,   which   means   that   the   frequency   resolution   is 

inversely  proportional   to  the  frequency   (Naidu,   1996).     But  the  orthogonal 

basis  vector  set,   coupled   with   the  increasing  resolution  bandwidth  due  to 

the   time-frequency   ambiguity,   makes   the   application   of  wavelets   suspect 

for   understanding   ocean   wave   fields. 

At  least   two   studies  have  been  reported  that  used   instantaneous  frequency 

(IF) to describe "local" wave behavior (Huang, et al,  1992;    Gran and 

Bitner-Gregersen,   1983).     As  described  in  more detail  in  Chapter 4  and 

Appendix   C,   the  algebraic   interpretation   of  the  IF  for  multicomponent 

signals is difficult;    in addition, Huang, et al  used arguments based on a 
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fractal   analysis  of ocean  waves  to  question  whether  ocean  waves   are 

differentiable,  with  the  consequence that  the  IF  may  be undefined.     (This 

issue will be addressed in Chapter 5.)    Regardless,  these analyses  only yield 

"effective"   scalar  local   descriptors   of  the  underlying   ocean   wave   process 

in   terms   of   a   time-varying   instantaneous   envelope   and   time-varying 

instantaneous   frequency   -   neither   of  which   provide   much   information 

regarding   the  actual  physics  of  the  component  waves. 

Borgman,  et  al,  (1993)  present  a new  method  for  estimating  the  evolution 

of the  spectrum  for  nonstationary  processes  such  as  ocean  waves.     This 

proposed  method  uses  the  usual   set  of orthogonal  Fourier  Series 

frequencies,   but   assumes   that   the   component   amplitudes   over   each 

segment   vary   according   to   a  quadratic   (or  cubic)   polynomial.      Allowing 

for  amplitude  variations  does   improve  some  of the  leakage  inherent  in  FFT 

processing,  but  because  this  technique  still   uses  the  fixed  Fourier  Series 

frequency   set  it  still   has   sizable  leakage  problems,  particularly  with   the 

phases. 
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1.5     Chapter  Summary 

As  outlined  in  this  Chapter,  there  are  presently  two  general  categories  of 

signal   processing   techniques   that   can   be   even   considered   for   identifying 

the  "local"  behavior  of ocean  waves  -  low  resolution  and  high  resolution 

techniques.      Both   suffer   from   significant   limitations   (time-frequency 

resolution,  low  rank,  etc.)  and  the  need  for subjective decisions  (such  as 

defining  the rank  of the  signal   or  noise  subspace).     Similar  arguments 

apply   to   wavelet  analysis. 

A final  quote from Goda (1985, p212) nicely summarizes the value of the 

present  body  of  signal   processing   theory  to   the  understanding   of  the 

physics  of ocean  waves: 

"The  interpretation  of random  sea waves  as a  linear superposition  of 

free progressive   waves  is  an   assumption,   the  correctness  of which 

cannot  be  proven   but,   rather,   must  be  supported  through   evidence 

of agreement between  the properties of real sea  waves and those 

derived from the mathematical model       Thus, the component 

waves   [from   an   infinite   summation   of infinitesimal   amplitudes]   do 

not   represent  physical   reality   in   themselves. 

Thus,  even with  all  of the recent advances,  there is  still  a clear signal 

processing   deficiency   that  has   made   it   impossible   to   satisfactorily   identify 

and  describe  the  local  behavior  of ocean  waves. 
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CHAPTER 4 

DESCRIPTION OF HARMONIC PHASE TRACKING METHOD 

4.1        Chapter    Overview. 

The   information   presented   in   the  previous   two   chapters   established   that 

there  is   no   existing   technique  capable  of  adequately  describing   an   ocean 

wave  field.     Chapter  3   classified  stochastic  signal  processing  techniques  as 

either   spectral   analysis   (low   resolution)   or   parameter   estimation   (high 

resolution).     Spectral  analysis  is  not  an  optimum  choice  for  wave  analysis 

because the time scale for stationarity is more on the order of tens of 

minutes   rather   than   the   hours   needed   for   spectral   ensemble   averaging. 

On   the   other   hand,   the  newer   parameter  estimation   techniques   have  the 

potential   of  returning   much   more   information   and   resolution   than   the 

spectral   techniques,   but  for  this   application   their  use  would  be  difficult 

because   the   noise   characteristics   are   not   known   (neither   the   covariance 

matrix   nor  the   standard   deviation),   and  the  rank   (number  of  sinusoidal 

components)   can   be   rather   high. 
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The  new   Harmonic  Phase  Tracking   (HPT)   technique  presented   in   this 

chapter  combines  the  best  features  of both  the  low   and  high  resolution 

descriptors.    For example, the HPT technique does use the same a priori 

assumption   as   the high  resolution  techniques,   namely,   that  the  signal   is   a 

finite   summation   of  constant   parameter   sinusoids   with   unknown   and 

arbitrary  frequencies,   amplitudes  and  phases.     However,  it  is   superior  to 

existing  high  resolution   techniques  because   it  makes  no  a  priori 

assumptions  regarding  the  noise  and  can   accomodate  a  large  number  of 

sinusoids.     This  chapter  presents  the  theoretical  basis  for  the  new 

technique   by   examining   some   constant   parameter   signals,   starting   with   a 

single sinusoid with  and without noise (Sections 4.2  to 4.5), then  a 

multiharmonic   signal   with  and  without  noise  in  Section  4.6.     Section  4.7 

describes   the   methodology   for   identifying   the   initial   vector   (including 

rank)  of estimated  frequencies  in  the  signal.     The  essence of this  proposed 

technique   is   first   identifying   the   true   signal   frequencies   as   accurately   as 

possible,   then   subsequently   using   that   information   for   the   estimation   of 

the   amplitude   and   phase   vectors. 
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4.2       Algehraic   Development   of   HPT   as    Applied    to   a    Single 

Sinusoid 

The fundamentals  of the new  technique  will  be  illustrated  in  this  and  the 

next two  sections using  constant parameter signals.     Consider first a 

continuous   unit   amplitude   signal   defined   by: 

x(t} = cos(27tft) 4.1 

The frequency  is  unknown,  and  a zero  phase is used for  simplicity. 

The objective  is  to  estimate  the  frequency,  then  the  amplitude  and  phase of 

this signal.     Define the estimated signal  (i.e, the model)  as: 

x(t) = ccos(27tf t+0) 
4.2 

= acos(27i f t) + bsin(27i f t) 

where the  "A"  symbol denotes  an estimate of the true variable.     The 

estimated  (not  the true)  frequency  is  assumed  known.     Estimates  for  the 

true  amplitude   c and phase 9   are both  based  on  finding  the  component 

amplitudes   ä and b.      For the purposes of this section it is not important to 

justify how the frequency was estimated;    that is the topic of Section 4.7. 

Apply the usual least squares approach to find ä and b. Define an error 

function as the integral of the squared error over some time integration 

interval: 
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s 
Q   =J[i(t)-x(t)]2dt 

* 4.3 

= f [acos(27Cf t)+bsin(27tf t} - cos(2rcft}]2 dt 

Take partial  derivatives  with  respect  to   ä and b;    set each derivative 

equation equal to zero corresponding to  the optimum values;     and 

rearrange   to   yield: 

ä [cos2(27tf t} dt+b Jcos(27tf t)sin(2rcf t)dt = 

5 

-4 

a 

4 

f COS(27Tf t) C0S(27Cf t) dt 

LJcos(27ift)sin(27tft)dt+bJ sin2(27tft)dt = 
4.4 

fcos(27Cft)sin(2Äft)dt 

-4 

Note   the   symmetrical   limits,   requiring   that   time   is   a  zero-mean   vector  in 

Equation   4.4.      Evaluate   the   trigonometric   analytical   integrals: 

fcos2(27Cft}dt = £(l + 5   - ) 
-K 

where 

4.5 

4- 
sin a 4 6 

a 
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is  the  well-known  sine  function  and  is  used  throughout  this  Chapter  and 

Appendix C.    Continuing with terms on the left hand side of 4.4, 

jcos(2rcft) sin(27tft) dt = 0 

4.7 

fsin2(2irft)dt = £(l-5   - ) 
J ATltl 
-\ 

While the  integrals  on  the  right hand  side  become: 

Jcos(27Cf t) cos(27Tf t)dt = \ (5       + S2Kf^) 

4.8 

Jsin(27Cf t)cos(27Cft)dt= 0 

-S 

where   fA = f-f and f_ = f + f   are  the  unknown   difference   and  sum 

frequencies,   respectively.      Substitute   Equations   4.5   through   4.8   into 

Equation  4.4   and   simplify   into   linear   algebra   form: 

1 + 5  . o 
4«f£ 

o        1-5 
4ltf£ 

•WWW! 4.9 

The  uncoupled   solutions   are  found   by   inspection: 

a"     1+5  . 
Anil, 4.10 

b = 0 

For  this  first  simple   case  of  zero  phase  cosine  and   symmetrical   integration 

limits,   we  note  three  results: 
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• the  out-of-phase  amplitude  is  always  zero  (no  surprise  since  it is 

orthogonal); 

• the  estimated  in-phase  amplitude  is  biased  by  errors  in  the 

frequency  estimate  (recall   the  true  amplitude  is   1.0);   and 

• the  estimated  phase   8 = tan"1(b/ä)  is  unbiased  and  is  independent 

of   the   integration   interval. 

This third point is the key.    Since b=0, then 6=0,  and most importantly, 

0 = 6  always. 

This result is equivalent if a sine instead of a cosine is used for the signal. 

Note that the  solution for this  case follows  the previous  case except for 

slightly-modified   right   hand   side   integrals: 

"1 + 5  . o 

o        1-5 
4JCf£ 

The solution   is  again  easily  seen  by  inspection: 

ä = 0 

<>        -5 

1-5  - 
4Kf£ 

0 

?       -5 
4.11 

4.12 

The   conclusions   are  unchanged   from   the   cosine   case;      the   orthogonal 

amplitude is  zero,   so  the  estimated  phase will  always  equal  the true phase. 

These  first  two   examples  were  considered   separately  to   illustrate  this 

important phase  matching  behavior  as  clearly  as  possible.     The     next 
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logical step is to analyze a monochromatic sinusoid with arbitrary phase 

which is simply the linear sum of these previous two special cases. Start 

by  defining   the  true   signal   with   independent  in-phase   and   out-of-phase 

amplitudes. 

x(t) = acos(27Cft)+bsin(27rft) 4.13 

This form corresponds to the model form in Equation 4.2.    The matrix 

equation to solve for the two estimated coefficients is seen to be the same 

on the left hand side as Equation 4.9 and 4.11, with the scaled sum of the 

two right hand  side vectors  from  those  two  equations: 

1+5   . 0 

o        1-5  - 
4 7tf£ 

> = <, 

27Cf    E, 27tf    E, 
V A IV 

5        -5      s 
27tf    £ 27tf    E, 

A IV 

4.14 

The two solutions are seen to be functions of the two true amplitudes: 

a = a 
5       +5 

27tfAE 27tfs£ 

"V 

1 + 5 

b=b 

intl       ) 

%        -5 

4.15 

1-5 
4ltf$ ) 

Next,  use  this  information  to  examine  the  behavior  of the  estimated  phase. 

First, note that it was shown in the two previous special cases that the  a 

and b   coefficient   estimates   do   vary   proportionally   to   the  frequency   error 
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and the  integration  length,  so  there is  a need  to  closely  examine how  the 

estimated  phase  behaves  for  this  arbitrary  phase  case.     But  second,  since 

this  signal  is  a  linear sum  of the two  orthogonal  components,  there is 

reason  to  expect  that the  estimated  phase  will  still  correctly  match  the  true 

phase.     This  can be checked by equating  the  arguments  of the estimated 

and   true  tangent  phase  functions  from  Equation  4.15: 

arg(6) = arg(8) 

^ 

a 
v   J 

b?b 
ä    a 

<1+-W 
^-•w 

(^2ifA5      ^2«fS4 ) 

b 
a 

4.16 

This  latter  expression  shows  that for the estimated phase  to  always  be 

equal to the true phase, then the bracketed term must be  1.0 for all sets of 

frequencies   and   integration  periods.     In   other  words,   while   a and b   are 

known   generally   to   both   be   incorrect   (biased),   their   ratio   must   remain 

invariant.       The behavior of this equation  and  the equations  for  a / a  and 

b/b     is investigated in more detail in Appendix B.    That investigation does 

show  that the bracketed  term  above does  stay approximately equal  to   1.0  as 

required  to  satisfy  Equation  4.16.     This  in  turn  establishes  the  important 

point that it is possible  to apply an  estimated (biased) frequency to an 

unknown   monochromatic   signal   and   recover  at   least   one   true   (unbiased) 

parameter  -   the phase. 
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4_JL Geometric    Interpretation   of   HPT    as    Applied    to   a    Single 

Sinusoid 

The  algebraic conclusions  from  the previous  section  of fitting  a single 

sinusoid  with  an  estimated  frequency  to  a  single  sinusoid  with  an 

unknown   frequency   can   be   reinforced   with   a   geometrical   interpretation. 

Recall  the least squares estimator from Equation 4.3  and rewrite it as two 

sinusoids   with   arbitrary   amplitudes   and   phases: 

\ 
Q  = J[x(t)-x(t)]2dt 

-\ 
4.17 

= J[ccos(27tf t+ 6) - CC0S(27Cf t+ ■&)]2 dt 
-4 

When  the  true  and  estimated  frequencies  are  close,  then   c = c, and the 

integrand   can   be   equivalently   represented   as   the  product  of  an 

instantaneous   sinusoid   with   a   slowly-varying   modulating   envelope   as 

outlined   in   Appendix   A: 

\ 
Q =2c J[cos(27if A t + y)cos(27rf t + \i)]2 dt 4.18 

-4 

where    fA = f-f 12,   f=(f+f)/2,  and  the  inequality  comes  from  the 

inequality  in  the  amplitudes;     the phases  in  these  last  two   equations  are 

not  relevant  and   are   only   included   for  completeness. 

The least  squares  error function  Q in  Equation 4.18 can  be  interpreted  as 

the   area   under   a   rectified   (squared)   beating   sinusoid.      Furthermore,   since 
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it is assumed here that  c-c,  then  the best-fit estimator for  d   (in  Equation 

4.17)  minimizes that positive Q area.     For any fixed time interval,  adjusting 

the  estimated  phase   £   changes   the   interaction   between   the  estimated   and 

true  sinusoids,   and   in  the  process  effectively   shifts  the  modulating 

envelope  of the underlying  instantaneous  sinusoid  in  time.     So  an 

equivalent   geometrical   interpretation   of   the   algebraic   least   squares 

problem  is  to  shift the estimated phase until the area under the modulated 

error  signal   is  a  minimum  over  some  fixed  integration  interval 

t _?<t<t +1 where  t   is the center time of the region.      It is intuitive 
c       = c c 

to  state  that  the  minimum  area  for  this   semi-positive  definite  product 

integrand   function   will   always  be  centered   about   a  minimum   of  the 

absolute  value  of the  envelope  (or  equivalently,   a  node  of the  zero  mean 

envelope).     In fact, this minimum is reduced to zero when   c = c    (thereby 

defining the zero-crossing of the envelope  at a time denoted  as  tzc). 

Finally, by  recognizing from Equation 4.17  that the envelope of the  Q 

function  is  zero  only  when   x(t^) = x(tzc), it is seen that the estimated and 

true phases must be equal for this to occur since the 2nftzc   contribution   is 

zero.    [Note also that the envelope of Q is a maximum when 

x(t   ) = -x(t   ).]        This   geometrical   interpretation  is   illustrated  in  Figures 

4.1a and 4.1b. 
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Error Signal: Bin & Phase=5.2 & 90 (true); 5.3 & 90 (est.) 

-150       -100        -50 50 100 150 

Least Squares Error Function 

-150        -100        -50 0 50 100 150 
Relative Time Index 

Figure 4.1a.     Minimum HPT Error Signal  when Estimated Phase 

Equals  the  True  Phase 
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Error Signal: Bin & Phase=5.2 & 90 (true); 5.3 & 110 (est.) 

-150 150 

Least Squares Error Function 

-150       -100 -50 0 50 
Relative Time Index 

100        150 

Figure 4.1b.     Non-minimum  HPT Error  Signal  when  Estimated  Phase 

Does Not Equal the True Phase 
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In  both  plots  the  second  subplot  is  the error  function  integrand  in 

Equation 4.17.     Figure 4.1a illustrates the correct case in which the 

estimated   phase   equals  the  true  phase,   even   for  an   incorrect   frequency. 

In Figure 4.1.b the estimated phase was purposely shifted by 20 degrees to 

illustrate how   the  area  of the  error  function  varies  from  the  minimum 

value  in Figure 4.1. a. 

A  second  geometrical  way  of visualizing this  phase matching  process  is  to 

consider  the  case  where  the  estimated   amplitude  and  the  estimated  phase 

(but not the frequency) are both unbiased.       For time equals zero  the 

frequency   contribution   to   the   trigonometric   arguments   will   be   zero   for 

both sinusoids (see Equations 4.2 and 4.13);    as a result the estimated and 

true signals  will be equal  and the error will  be zero.     However,  since the 

frequencies   are  different,   an   error  will   grow   with   an   envelope   (that 

initially   increases   linearly)   as   the   two   unequal   frequencies   contribute 

different  amounts  versus  time  to  each  cosine  argument.     As  above,  the 

minimum  error  area  must  straddle  this  time  value where  the error  is  zero 

namely,   where  the  phases   are  zero. 
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4.4   Review:   HPT    Phase    Trackin?    and    Frequency    Correction    as 

Applied    to    a    Single    Sinusoid    Signal 

Sections 4.2  and 4.3  showed that a least squares  technique will  return  an 

unbiased  estimate  of the  true phase for  any  segment  of a  single  sinusoid 

deterministic  signal  as  long  as  the estimated  frequency  is  close  to  the true 

frequency.     The key  to  the Harmonic Phase  Tracking  technique  is  that this 

behavior  can  be   exploited  to   identify  the   true frequency. 

The  approach  begins  by  identifying  one  section  of the  time  series.     Recall 

that  an   estimated   (trial)   frequency  is  assumed   known,   and   define   a   "local" 
ref 

zero-mean time variable centered at reference time tc . Perform a least 

squares fit (as described in Section 4.2) to estimate the "effective" phase 

defined   from   the   coefficients   as 

ä = 27rft+£ = tan-1fk/ J = ß 4.19 

Since  the  local   time  is  zero-mean,  then  this  estimated  effective  phase  will 

equal   the   true  constant  phase   value   #   (i.e.,  using  a zero-mean  time  vector 

eliminates  possible bias  due  to  errors  in   f   from the  2jcft   component  ). 

Next,  shift  the time  series  segment forward  (say,  a  small  percentage  of the 

segment   length   and   typically   keep   the   same   segment   length),   redefine   a 

new   local   zero-mean   time  vector  and  center  time   tJc,   and   re-estimate   the 

"effective"  phase  relative  to  that  new  center  time.     Repeat  this  process 

several   times  in  the  forward  direction  and  a  similar  number  in  the 
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negative  direction.     This  defines  two  numerical  functions:     one  with  the 

shift  in  center  times  (Atc = tc-tc6)  and one with phase estimates  Q(tc). 

Next,   return  to  the  concept  of  Instantaneous  Frequency  discussed   in 

Appendix A,  Section A.2.    Note that Equation A. 12 shows that the frequency 

can  be  found  from  the  time  derivative  of the  "effective"   phase  function 

defined   above: 

— = — (2jcft + 0) = 2jcf 4.20 
dt     dr ' 

By   making   the   numerical   approximation   that 

dß     AQ 

dt     At 
4.21 

c 

The  true  frequency  is  readily   estimated  by  equating  these  two   equations: 

27E VAtc7 
4.22 

Geometrically,   when   Q(tc)  is plotted versus  Atc, the slope is 27if - not 2nf. 

That is the key observation - the true  frequency   is   recoverable   directly 

from use of an estimated   frequency. 

The process  described  in  this  section  and resulting  in  Equation  4.22  for 

determining   the   unknown   frequency   of   an   arbitrary   single   sinusoid   can 

be  summarized   as: 
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1. Estimate the true frequency  (the technique used for this  study is 

outlined  in  Section  4.7). 

2. Estimate the local  "effective"  phase using least squares. 

3. Shift the segment and estimate a new effective phase. 

4. Repeat step 2  as many times as desired,  shifting forward and/or 

backwards with  any  set of shift values  to  define a phase function 

and   a  time  shift  function  (uniformity  is  not  necessary;     symmetry 

about   the   initial   segment   is   recommended). 

5. The (circular) true frequency is found as the slope of the plot of 

effective   phase   function   versus   the   time   shift   function. 

Strictly  speaking,  if the  signal  was  known  to be  a  single pure  sinusoid 

with no  noise,  then  one  time  shift and  one new  phase estimate  are 

sufficient  to   identify  the  slope  and  in   turn   the  true  frequency. 

The final   necessary  step  in  fitting  the  signal  is  to  estimate  the  amplitude 

and  phase.     These  are  available  from  performing  one  last  least  squares 

analysis   of  the   center   segment   using   this   "best"   frequency. 

4.5   Rffttpt    of    Additive    Noise    in    a    Single    Sinusoidal    Signal. 

Noise  immediately   converts   this   deterministic   problem   into   a   stochastic 

problem.    Noise will definitely add a variance and in some cases a bias to 

the  phase   estimates.      The  usual   remedy   for  eliminating   the   variance   in 

stochastic   estimates   is   to   algebraically   average   across   independent   "raw' 
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estimates  (a  good  example  is  ensemble  averaging  with  FFT-based  spectral 

analysis). 

The  phase  tracking   technique  described   and   summarized   in   the   last 

section works  for stochastic  as  well  as  a deterministic  signals.     Consider the 

usual  definition  of noise as  uncorrelated  and  white.     The presence of such 

noise  will   certainly  add   variance  to   the  effective  phase  estimate  function. 

But fitting  a linear slope  automatically  acts  to  smooth  the estimated  phases 

and  thereby  minimize  the  noise-induced  bias.     Secondly,   since  the  time 

shifts   are  recommended  to  be  small   percentages   of  the  segment  length, 

then   adjacent  phase   estimates   use  redundant   data   and   are  therefore 

correlated,   meaning   that  any  noise  effects   will   likewise  be  shared   between 

all  the estimates;     this  would  introduce a  [slowly-varying]  bias to  the phase 

function,   but   since   it  has   a  slowly-varying   magnitude   it  would   not  greatly 

affect the slope of the phase  versus  time plot.  Hence,  the process  described 

for   the   single   deterministic   sinusoidal   signal   is   equally   appropriate   when 

stochastic noise is added.    In other words, the noise would add both bias and 

variance  to  the   £2(t )   function,  but both   are  minimized   when   the  first 

order slope  is fitted.     As mentioned,  the least squares error function  is  an 

integrator  typically  over  several   cycles  of the  signal,   and  integration  is   a 

smoothing   operation   that   will   further   act   to   minimize   the   variance   in 

each of the shifted phase estimates due to noise.    This shows that the 

estimated  slope fitted  to  many  shifted  phases  should  still  be  a reliable 

estimator  even  for  the  case  with  noise. 
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The previous  section  did  state that,  for a pure sinusoidal  signal,  that only 

one  time  shift was required.     That would produce  a very unreliable phase 

estimate if noise was present.    The simplest way then to accomodate noise is 

to  use  the  same  deterministic  signal  process  but  increase  the  number  and 

range of the time shifts to provide more information for the slope 

estimation   (which   in   turn  requires  a  longer  segment  of the  data   vector). 

Thus,  these  last  three  sections  have  outlined   a  robust  technique  for 

estimating  the  frequency,  amplitude,   and  phase  of a  single   sinusoid   with 

or   without   additive  noise. 

The next  section  extends  this  technique to  a multiharmonic   signal   defined 

as  a finite  summation  of sinusoids  with  additive noise. 
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4.6  HPT    Algebraic   Development   as    Applied   to   a    Multiharmonic 

Signal 

The technique presented in the previous sections for identifying the true 

frequency of a single sinusoid, with and without noise, is readily extended 

to  the case of a  multiharmonic  signal  with  and  without noise. 

The  objective  is   to  estimate  the  frequencies   and   corresponding   amplitudes 

and  phases   of  a  multiharmonic   signal   s(t)   with  uncorrelated  noise   n(t) 

defined   as: 

x(t) = s(t) + n(t) 

r 
= Jc.cos(27if.t+0.) + n(t) 4.23 

= JH a .cos(2rc f.t) + b .sin(27T f.t) 
j=iL 

+ n(t) 

In  general,   this   true  number  of sinusoids   (r)   is  unknown,   and   accurate 

identification  of r  is  in  fact often  an  important part of the  analysis.     In 

some  instances,   it  is  apparent  upon   inspection  of the  results  that  only  a 

certain   number   of  components   have   significant   amplitudes,   and   that 

number can be taken as  an estimate of r.     However,  for many geophysical 

signals,  there  is  no  clear  demarcation  in  amplitudes,  or,  the  objective  of 

the   analysis   is   in   fact   to   quantify   small   amplitude   nonlinear   components 

(such as coupled  Stokes harmonics);     in these cases the estimation of r is 

more  difficult,  and  it can  in  fact  vary  among  analyses.     Jammalamadaka 

and   Sama   (1993)   present   an   approach   using   circular  regression   that 
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presents  a statistical  approach  for finding  r.     This  topic  is  revisited  in  later 

Chapters. 

Define the estimated  signal  (i.e.,  the model)  as: 

S(t) = ^C.COS(2TCf.t+ej) 
j=l 

4.24 

= £ a.cos(27Cf.rj)+b.sin(27tf.ti) 

Note  that  all  of the parameters  in Equation 4.24  are estimates,  including 

the  number  of sinusoids   (r)   in   the true   signal.     As   with   the  presentation 

used   in  the  previous   sections,   assume  first  for  illustrative  purposes  that  a 

vector   of   approximately-correct   estimated   frequencies   (f = f = f + fA)is 

available   where   f = 
lT 

fx     f2 
(Again,   a  procedure   for   generating 

this   initial   frequency  estimate  vector  is  the  topic  of Section  4.7.) 

Begin  with  the usual  least  squares  approach  to find  the   a^a^^    •••    a.| 

and  b = b     •••   bj    vectors from Equation 4.23.    Define an error 

function   as   the   integral   of  the   squared   error   over   some   time   integration 

interval: 

\ 
Q   = J[£<t)-x(t)]2dt 

= N}T ä.cos(2rcfjt) + bjsin(27tf.t) -x(t) 

4.25 
2 

\   dt 
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As  before,  take partial  derivatives  with  respect  to  the  individual 

components  in  both   a and b;    for example, a sample partial derivative is: 

dQ_ 

3a. 

r 

= 2 l- V|ä.cos(27üfjt)+bjsin(27tfjt) -x(t) COS(27Tf.t) dt 4.26 

Set this  equal  to  zero  and rearrange: 

N 2^fä .cos(2rcf .t) + b .sin(27if $ cos(27Tfit)dt = Jx(t)cos(27Tf.t)dt   4.27 
-4 

4.28 

Interchange   the   linear   summation   and   integral   operators: 

r r     * Ä Ä .   ^ Ä . 
]£ ä.Jcos(27Cf.t)cos(27ifit)dt+bjJsin(27ifjt)cos(2jif.t)dt 
7=1        ^ D % 

Jx(t)cos(27rf.t)dt 

Since the frequencies on the  left hand side of Equation 4.28  and the 

complimentary   equations   for   the   other   a and b   coefficients   are   known, 

those  integrals  can  be  analytically  evaluated just  as  with  the  single 

sinusoid  case previously presented in Sections 4.2 to 4.5.    Recall that in the 

single  sinusoid  case,  the  two   (equal)  off-diagonal  terms  in  the basis  matrix 

were   identically   zero   and   the   in-   and   out-of-phase   coefficients   were 

uncoupled.      However,   Equation   4.28   has   multiple   arbitrary   frequencies 

over  arbitrary   (but  symmetric)   integration   intervals,   so   it  is   expected   that 

several  off-diagonal   terms  in   the  basis  matrix  will  be  non-zero. 
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The  problem   formulation   for  this   multiharmonic  case  can  be   illustrated   by 

assuming   two   sinusoids   and  using   the  analytical   integrals  outlined   in 

Section  4.4.     After   simplification   and  rearrangement,   Equation  4.28 

becomes: 

1 + 5   -        5,„   ? + 5„f   f 

S + 5 1 + 5  - 
-A12*      

2Äf^ ^t2\ 

0 

0 

0 

0 

0 

0 

-5„ 

0 

1-5 5 

5 -5 1-5   - 
2JCfAl24 2*fZl24 4nf2^ lb2J 

Jx(t)cos(27rf1t)dt 

|x(t)cos(2rcf2t)dt 

Jx(^sin(27Cf1t)dt 

k 

jx(t)sin(2rcf2t)dt 

4.29 

where    f.     = 
A12 

f
2"

fx and fT f +f, 

Inspection   of  the   coefficient   vector   shows   that   the   ordering   of  Equation 

4.29  is  such that the estimated  cosine basis  vectors  are grouped  in the first 

two  columns  of the basis  matrix,  while  the second  two represent the 
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estimated sine basis vectors.    Thus, the basis matrix can be thought of as 

divided  into  a two-by-two partition substructure.     The two  cosine and  two 

sine  integrals  in  the  upper  left  and  lower right partitions  of the basis 

matrix   are  non-zero  since  the  integrand  is  an  even  function  in  both  cases 

and  the limits  are  symmetrical.     The upper right  and  lower  left partitions 

are  always  zero   since  the  integrands  are  odd   [cosine-sine]   functions  over 

symmetrical limits.     This means that Equation 4.29 can be reduced to two 

partition   equations,   one  for  the  in-phase   and   one  for  the  out-of-phase 

coefficients: 

U 

1 + 5  - C + s 

5„ f   * + S, f   ,      1 + 5  - 2*f A    E 2*fll2$ 4 7lf2t. i>mi 

fx(tJcos(27ciLt)dt 

-\ 

Jx(t) cos(27tf2 t)dt 

4.30a 

and 

1-5 

s       - s 
J2«£      ^      527tfIl2E a12 

1-5 
4 7tf,E. 2) 

s 

fx(t)sin(27Cfit)dt 

-\ 
\ 
|x(t)sin(27rf2t)dt 

4.30b 

This   partitioning   saves   considerable   computer  time  for  problems   with   a 

large number of sinusoids  in  the  signal.     For discrete  data,  the integrals  on 

the right hand  side of Equations 4.30  are approximated by summations;     for 

example: 

|x(t)cos(27Cfl t)dt = At 
z„ + z   „ 

1 L+l 

3=2 

4.31 
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where   z-sxjcos(2jcf1tj )   and L+l is the length of the discrete XJ  data vector 

such that  % = L/2. 

The final step is to solve Equations 4.30.      Note that the basis matrix is only 

an  estimate  of the true basis  matrix  since  the  true  frequencies  are  not 

known   (in   particular,   the   off-diagonal   terms   can   have   significant   errors), 

and in fact change during the analysis.    For this reason it is incorrect to 

solve  these   equations   using  conventional   least   squares,   and   instead   total 

least squares  is  used. 

For  applications  where  noise  is  present,  N  equations  are needed  to  exactly 

fit N data points regardless of the size of r.    In these general cases 

Equations  4.30   are  overdetermined   and   the  equations   are  not  consistent. 

Since there is  no  exact solution  a minimum norm measure  must be used 

instead.       Consider representing Equations 4.29  in  the usual Ax=d  form. In 

conventional   least  squares,   the   solution   is   found   from   the   normal 

equations   given   by 

ATAx = ATd 4-32 

or    equivalently 

ATe=0 4.33 

where   e = Ax-d  is the error vector.    Equation 4.33 shows that e  must be 

orthogonal  to the range of AT.     Thus,  in  conventional  least  squares  the 

"best"  estimated  solution  is defined  as the vector in the range of AT such 
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that the vector sum of it and e  equal the original d   vector.     This least 

squares   vector   solution   is   quantitatively   defined  by: 

\-i 
:1S=(A

T
A) ~ATd 4.34 

The important point here is that it is implicit in conventional  least squares 

that the basis matrix is exact since the solution is forced into its range. 

However,  the basis  matrix  in Equation  4.30  is  constructed from  estimated 

frequencies  and  is  not  exact,  so  a more  appropriate  solution  technique  to 

apply is total  least  squares  which  is  described  briefly  next. 

Total   least   squares   essentially   geometrically   recasts   the   problem   before 

taking   advantage   of the  properties  of the  least  squares  estimator  described 

above  (Van  Huffel  and  Vandewalle,   1991).     Simply rearrange  the least 

squares  formulation  to  define  a new   "augmented basis  matrix"   and  a 

correspondingly   modified   solution   vector: 

[A     i     *]{_*} = 0 4.35 

This  is  algebraically  equivalent to  saying  Ax-d = 0, but geometrically it is 

quite  different.     The  fundamental  difference  is  that  the basis  matrix  has 

been   altered   to   incorporate  the  data   column   vector  d   (resulting  in  a 

coefficient  vector  that  is  one  longer  than  before).     This  means  that  the 

range of the  transpose of this  new  basis  matrix  is  affected  by  information 

in the d vector as well as the A   matrix.  The total least squares solution  to 

Equation 4.35  is equal to the null vector of the transpose of this new basis 
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matrix.     As  previously  stated,  whenever  noise  is  present then  this  new 

augmented   matrix   is  full   rank. 

In  practice,   the  recommended   technique  for   solving  Equation  4.35   starts 

by  performing   a  singular  value  decomposition   of  [A   :  d].   By the 

minimum   norm   properties   of   the   singular   value  decomposition,   the 

vectors  in  the  left  and  right  singular  matrices  (U  and V,   respectively)   are 

ordered  in  terms  of decreasing contribution  to  the   [A   :  d]  matrix (as 

quantified   by   the   singular  values).     Therefore,   the  last  right   singular 

value contributes the least and  is  accordingly it is the best estimate  of the 

null  vector required to solve Equation 4.35.     Since this is an 

overdetermined   system   of  equations   when   noise   is   present,   the   right 

singular matrix  will  generally be full  rank  and  thus  does  yield  a  viable last 

right  singular  vector  for  estimating   [xT -1]T.     But because the singular 

vectors   are  orthonormalized,   a  final   scaling   is  required  to   set  the  last 

element of this  null  vector to  -1   (note that this does  not  affect the  solution 

to  Equation  4.35  since  it is homogeneous);     then, the remaining  scaled 

elements  are  equal  to  the  total  least  squares  estimate for x. 

Summarizing:     given  an  estimated  basis  matrix  with  dimensions  AMxN with 

M>N, and a data vector dNxl-    Construct a new matrix [A   :   d]Mx(N+1)- 

Since it is assumed that no exact solution is available (i.e, d is not in the 

range of AT), then the new matrix is full rank.    The "best" rank N matrix 

approximation   to   this   new   rank  N+l   matrix   (i.e.,  a  consistent  matrix 
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representing  the range  of AT and d)  is found from the summation of the 

first  N  singular  values  and   vectors  from  a  singular  value  decomposition. 

If this new consistent matrix is denoted as  [A   :  d], then the best total 

least squares  solution can be  shown  to be: 

k     = A_1d 4.36 
tls 

However,   in  practice  a  different  definition  is  used.     The  remaining  right 

singular   vector  VN+1   not used  in  the rank-N  approximation   [A   :  d] is 

orthogonal   to   this   new   best   matrix   and   therefore  represents   an 

approximation  to the null row  space.     So  instead,  directly  scale this vector 

to  arrive  at the best total  least squares  estimate for the coefficient vector: 

v    L 

IT 
4.37 Xtls~      „ LV1^+1        '             '        VN,N+1 

N+l.N+1 

Figure   4.2a   and  4.2b   illustrate   the   geometrical   difference   between   the 

conventional   and   total   least   squares  problems   -   primarily,   that  the  range 

of the  basis  matrix  is  different. 
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Figure 4.2a      Least Squares (LS) Geometry 

Figure 4.2b      Total Least Squares (TLS) Geometry 
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It has  been  shown  that the  total  least  squares  estimator  is  significantly 

more   robust   for   almost-collinear   multicollinearities   (i.e.,   ill-conditioned 

problems)   compared   to   conventional   least   squares   (otherwise,   the 

solutions are similar).     As discussed in later Chapters,  this is a valuable 

characteristic   for   signal   processing  applications   such   as   the  new 

Harmonic   Phase   Tracking   technique   developed   here. 

The  preceding  presentation   in   this   section   has   described   the   solution 

£  f, ••• f- 12 r 
and for 

methodology  for  finding  the  best  estimate  of the  coefficient  vector, 

relative to  one estimate  of the frequency  vector   f = 

one   particular   segment   from   the   data  realization: 

• Use this frequency vector to define the analytical  basis  matrix 

A and numerical data vector d  using Equations 4.29 and 4.30; 

• perform   a   singular   value   decomposition   on   the   augmented, 

estimated  basis  matrix   [A   :  dj; 

estimate   the  total   least  squares   coefficient  vector 
/v-iT     r *     * *■   IT 

X       = 
tls *':*>]    =[«1   h   -ar:    blb2   -br using   Equation 

4.37; note that the estimated rank may not be equal  to the true 

rank  of the  signal. 

convert  the  coefficient   vector  to   a  phase   vector  referenced   to 

the  center  time   of  this   segment: 

Qti-^fyQ 4-38 
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Equation 4.38  is simply a vector version of Equation 4.19  (i.e.,  the argument 

is  intended  in  an  inner  product  sense).     And,   again,  the  trigonometric 

function   must  account  for  the  proper  quadrant  of  the  phase. 

The next  step  is  to  shift  the fixed-length  segment forward  and  backward, 

then  for each  shift  to  recalculate the right hand  side  d   vector and 

estimate   corresponding   phase   vectors   using   Equation   4.38. 

At this point the solution methodology diverges from a simple scalar-to- 

vector extension of the single sinusoid case. It would seem that the true 

[multiple]   frequencies   could   be  estimated   following   scalar  Equation   4.21: 

f L± 
k    2% 

 k 

v At   . 
k=l,2,-,r 4.39 

Unfortunately,   estimates  using  Equation  4.39   are  not  always  accurate.     The 

source  of the  problem   lies  in  the  fact  that,   in  the  multiharmonic  case,   the 

off-diagonal  terms  in  the  basis  matrix  are  not zero,  so  that the coefficients 

are coupled and biased.     Those terms were zero for the single sinusoid  case 

(where   an   error   in   the   estimated   frequency   does  admittedly   introduce  a 

[very   small]   bias   in   the   single  phase   analytical   function   defined   in 

Equation   4.16).      In   the   multiharmonic   case,   errors   are  introduced   into   the 

coefficient   vector   estimate,   and   hence   into   the   phase  vector   estimate, 

whenever  biased  frequencies   are  used   in   the  basis   matrix   (or  noise   is 
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present  in  the  signal).     Those  errors  further illustrate  the  value  of total 

rather   than   conventional   least   squares   as   the   preferred   solution   method. 

So, direct application of Equation 4.39 is not used because it was found to be 

unreliable.     All  of this  indicates  that  an  iterative technique  is  appropriate 

for  the  multiharmonic  case.     During  the  nth   iteration,   the   frequency 

vector  from  the  previous   iteration,   denoted   Fn~   , is increased or 

decreased  proportional  to  a modified factor based on Equation 4.39 to 

become the new  estimate   f^n).    Consider each ratio of the updated versus 

the   initial   estimated   frequencies   f (n)/f (n_1)  at the end of this nth 

iteration.     While these ratios are not always absolutely  correct, it has been 

found that the relative   magnitude  of this  ratios  are  typically  correct  (i.e., 

large  versus   small   increase,   or  large   versus   small   decrease). 

The   frequency   adjustment   technique   at   each   iteration,   as   implemented   in 

the  computer  code,   starts  with   the  apparent  adjustment  to  the  initial 

estimate  of frequency  indicated  by  the   f (n)/f (n_1)  ratio, but modifies it 

based  on  several  other factors.       Therefore,  this  iterative stage of the 

solution process  cannot be  described  as rigorous,  and  because of that it can 

be implemented in  any number of ways.     It has been found  that the 

estimated   frequency   vector   can   exhibit   quite   dynamic   behavior   during 

this   iterative   process.      Example   situations   illustrating   that   dynamic 

behavior    include: 
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frequency    removal:     in some cases the amplitudes at a given 

frequency  will  asymptotically  go  to  zero.     This  occurs  in  situations 

where  an   initial   (or  inserted)   frequency   is   incorrect.     When   such 

small   amplitudes   are  detected  that  frequency  is  removed  from  the 

frequency  vector  as  noncontributory,   and,   to  reduce  the  size  of the 

basis   matrix. 

frequency  removal:     in some cases where there are two  closely- 

spaced  true  frequencies  (say, just  below  the resolution  limit  of  this 

technique),   the   initial   estimated   frequency   vector   may   contain 

two   frequencies   spaced   slightly   wider.      The   iterative   technique 

will   result   in   both   frequencies   [correctly]   converging   towards   the 

true  values,  but if they  get too  close  the analytical  coupling  in  the 

basis   matrix   increases   the  condition  number  too   much,   at  which 

time   the   two   estimated   frequencies   are  purposely   replaced   with 

one   equivalent   frequency    (the   time-frequency   ambiguity 

problem). 

frequency  addition:      the  estimate  for  the  frequency  vector  leads   to 

estimation   of the   coefficient  vector,   and  from   that  the  time  domain 

error  between  the  data  and   the  present  fit  can  be  calculated  at 

each   iteration.     If the   spectrum   of that  error  shows   any   individual 

ordinates  above  a  selected  threshold,   then  it  is  necessary  to  insert 

frequencies   into   the   frequency   vector   in   that   region. 
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These  few  examples  demonstrate that the  frequency  vector is  quite 

adaptive   during   the   iterations,   which   is   actually   a  powerful   characteristic 

of this  Harmonic Phase Tracking  technique.     Appendix  C  contains  a 

thorough   review   of  the   many   algorithms,   checks,   and   thresholds   chosen 

for   this   implementation. 

The final  step  is  to  identify  measures  to  indicate  convergence  of this 

iterative/asymptotic process.     Two  measures  are used.     The first is  absolute 

- if the ratio of the root mean square value of the error divided by the root 

mean  square  value of the  data  vector  over  the finite  segment  of interest  is 

less than a threshold - say 0.5  percent -  and the estimated  amplitudes  and 

phases   are   not   significantly   improving   with   the   iterations,   then 

convergence   is   conditionally   assumed. 

The  second   measure  is  relative  convergence,   which  is  the  more  difficult 

and more universal  of the two.     If the noise is not negligible,  then the 

absolute  criterion  will  never  be  reached  with  a  small  number  of modeled 

components.     In   this  more  typical   case,   the  iterations   asymptotically 

converge to  a  "best"  case where no  further improvements  are  evident.     As 

implemented,   convergence   is   assumed   if  the   maximum   variations   in   the 

last  several  amplitude,  phase,   and  frequency  vectors  all  are  less  than   a 

selected   threshold   (subjectively   chosen   based   on   many   numerical   studies). 
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Strictly   speaking,   since   the   iterative   process   asymptotically   converges, 

the  technique  never   fully   achieves   "the  exact   answer"   even   in 

deterministic  validations  versus   known  signals.     However,   it  should  not be 

inferred  from   this   statement  that  the  technique  is  either  slow   to   converge 

or   only   capable   of  returning   approximations;      in   deterministic   (noise- 

free)   validation   studies,   accuracies   of  two   and   often   three   significant 

digits for amplitude, phase,  and frequency using  10 to  30  iterations  are 

typical.        Asymptotic  convergence  is,  of course,  also  inherent  in  many 

other  numerical   models   such  as  finite  and  boundary  elements  where  it  is 

necessary   and   acceptable   to   define   convergence   thresholds   that   are   trade- 

offs between  accuracy  and  computer time.     Appendix  C  also  contains  full 

discussions  of these  issues,  and  a full  summary of the  technique  as 

implemented.      Numerical  performance  is   addressed  there   and   in   the  next 

three    Chapters. 

4.7  identification   nf   the   HPT   Initial    Frequency   Vector   for 

M,.inharmonic Signals 

In  all  of the preceding  discussions  in  this  Chapter,  it has  been   assumed 

that  a  vector  of estimated  frequencies  was  available  to  begin   the  iterative 

process.      This   section   presents   a   technique   for   identifying   this   initial 

vector  of  estimated   signal   frequencies   defined   as 

f(0) = £°)    f(°)    ...    f(°) 
12 - 

IT 
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The objective is to estimate  f(0)  with the following two  attributes:     (1) 

reasonable   if  not  correct  rank,   and   (2)   reasonably   correct   frequency 

values.     Actually, neither of these is strictly  necessary  since the size of the 

frequency   vector   (r)   is  dynamically  adjusted   during  the  iterative  process; 

but  those  dynamics   (and  hence  the  number  of iterations)   can   be  reduced 

with   a   reasonably   accurate   initially   estimated   frequency   vector. 

Consider  for  illustrative purposes  a  deterministic  signal   x(t)   defined   as  a 

single   sinusoid,   with:   unit   amplitude,   a  frequency   at  Fourier   Series   integer 

bin k, unit time steps, and zero phase (i.e., a cosine).    A length-N ITT would 

result  in   the  discrete   complex   transform   vector: 

X(fjlt0) = ^6(fj-fk) + i0 j = 0,l.-N/2 4.40 

where   t    is the reference start time for the segment used for this FFT,   O is 

the  usual   delta  function  operator,   and   i = V-T   is  the  imaginary  operator  . 

In   words,   the   imaginary   transform   is   identically   zero,   while   the   real 

transform  is zero  except for a finite delta function  at the kth   Fourier  bin. 

Now shift the time series forward one time step.    This introduces a time 

domain phase equal to 2icfk(l).    Thus, the original cosine signal now must 

be represented with  a cosine  and  a sine wave such that the square of their 

amplitudes is one (the original  amplitude).     The same length-N FFT 

assigned  to  this first  shifted  segment would  result in: 
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X(fjlt1) = ^{^ + iV0-^2)}5(fJ-fk) j = 0,l,-N/2 4.41 

where   |X<1   represents   the  fractional   amplitude  proportional   to   the  real   (in- 

phase,  cosine)   component  (here,   |i=cos(27if(l))). 

Imagine continuing  this  process  for M  time  steps.     First,  identify  the 

period for a sinusoid at the ktn  Fourier bin as the reciprocal of the 

frequency,   or  Tk=^/k-    Thus, for a time shift of one quarter cycle equal to 

N/4k,  the  shifted  signal  will  be  a  sine wave  with  negative unit amplitude 

and   a   purely   imaginary   transform 

X(fjltN/4k) = 0 + i^8(fj-fk) J = 0,1,--N/2 4.42 

The real  transform  vector is  identically  zero.     After *V2k   time  shifts the 

original  unit  amplitude  cosine  appears   as   a   negative   unit   amplitude  cosine 

with    transform: 

X(fJltN/2k) = -X(fJlt0)=-^J5(fJ-fk) + iO j = o.i,.-N/2       4.43 

For a time shift of N/j,  the time series has rotated one full  cycle and the 

transform    repeats: 

X(fjltN/k) = X(fjlt0) j = 0.l,-.N/2 4.44 

This   first   cyclical   transform   pattern   repeats   every   N/fc   time  shifts  ad 

infinitum. 
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Continuing  with  this  first  single  sinusoid   example,  now  define  a  matrix 

assembled  using  columns  taken  from  the  real  part  (9?)   of  the  transforms 

in   chronological    order: 

R (N/2)xM ^{[XC^Ito) XCfjIt,) - X(fjltM)]} 4.45 

where N is the length of the transform (N/2  is the Nyquist bin) and M-l is 

the  number  of transforms  (i.e.,  number  of time  shifts,   which  can  be 

forward   and/or  backward).     The  kth row of R   represents  the  signal   passed 

through   a  narrow   (Fourier)   filter  centered   at  bin  k.     For  this  preceding 

example case, R  would equal: 

"0   0   •••   ol fo   0   •••   0 

R(N/2)XM       [ /2 
4.46 

where t'=[0 1   M-l] and t=cos(27tfk(M-l)/(N/2)   for   all   forward   shifts. 

Since R   is  a chronological  ordering of transforms, it is seen to be similar 

to  a  two-dimensional   spectrum   S(flt)  (oftentimes denoted as  S(f,t) in 

nonstationary  studies)  of the  signal.     However,  direct  use  of the  transform 

for R  retains  signs which are rectified and lost in the S(f,t) 

representation.        In  fact,   since  the  Fourier  Transform  is   a  linear  operator, 

linear  system   theory  requires   that  for  deterministic   signals   each   row   of R 

will  exhibit  the  same  frequency  as  the  associated  time  domain  sinusoidal 
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Signal.  Thus,  R  is a linear operator whereas S(f,t) is not.    This is an 

important   distinction   that   is   discussed   further   in   this   section. 

Note that for this  case of a single sinusoid with  an integer Fourier 

frequency   the   kth  transform row  is a scaled version of the time domain 

signal;     that is,  they have identical frequencies  and phases.     If the 

deterministic   time  domain   sinusoid   had   been   defined   with   an   arbitrary 

phase,  then   the  phase  of the  transform  would  show  that  same  arbitrary 

phase  because  R  is a linear operator. 

Thus,   for  this   simplest  case,   identification  of the  frequency,   amplitude,   and 

phase  of  the  frequency   domain   transform   sinusoid   allows   for   recovery  of 

the   parameters   of  the   underlying   time   domain   sinusoid. 

The  next  simplest  deterministic  time  domain  signal  to  consider  is  a 

multiharmonic   signal,   but   with   frequencies   constrained   to   equal   Fourier 

Series   integer   frequencies.      Since   all   of  the   signals   are   orthogonal,   each 

row of the resulting R   matrix  is  unaffected  by  the  other  transforms,   and 

again,   the   component   sinusoids   can   be  recovered   identically   from   each 

row.      Therefore,   even   for   this   special   multiharmonic   case,   recovery   of the 

time   domain   sinusoids   is   straightforward   after   identification   of   the 

component   amplitudes   and   phases   (recall   that   the   frequencies   are 

constrained   to   the  Fourier   integer  harmonics   so   are  already  known)   of the 
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frequency domain  sinusoids  as  defined by rows  in R.    Note that each row of 

R   will   exhibit  a  different  frequency   appropriate  for  each  bin. 

This  scheme  of identifying  the  components  in  the  time  domain  signal   from 

analysis of the R   matrix   is   less   straightforward   for   nonorthogonal 

multiharmonic  signals.     For  this  case,  consider  a  single  sinusoid 

deterministic   signal   with   an   arbitrary   frequency   not equal to one of the 

Fourier  harmonic   frequencies   -   i.e.,   a   frequency   corresponding   to   a 

"fractional"   (non   integer)  bin   number.      As   was  shown   previously  in 

Figure 3.1,  a finite Fourier transform of this  signal  leaks energy to  all  of 

the bins.     However,  since this  leakage is in phase with the sinusoidal 

signal,  all of the rows of R  will still exhibit the same single period as the 

time   domain   signal.    If the fractional frequency is closest to the kth 

Fourier  bin,   then  that row   will   show  the  largest  amplitude.     Unfortunately, 

the phase of the transform  at this  kth   row   is   no   longer  necessarily   equal 

the phase of the time domain sinusoid.    This is easily illustrated by 

considering  a  signal  defined  as  a  single  zero-phase  cosine  (relative  to  a 

FFT time axis t'=[0 1    M-l] ) with a    frequency at the (k+1/2)th bin.    This 

means that a FFT would see k+*/2 cycles of this signal.    Since the FFT 

interprets   the   original   signal   as   one   period   of   an   infinitely-repeating 

periodic   signal,   it  falsely   interprets   the  original   cosine   signal   (i.e.,   even 

function)  to  instead be an odd  function  (note that in  this  example each  of 

these periodic  segments  ends  at a  */2  cycle, or trough, then has a 

discontinuous jump   to   a  crest  to  start  the  subsequent  segment;  thus  x(-t)=- 
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x(t) at the origin).    Because this is an odd function, the FFT will return 

identically   zero  values  for  the  real   transform   -   even   though  the  original 

signal  was  truly  an  in-phase  cosine.     Thus,  the  transform  is  completely 

out-of-phase  with  the  time  domain  signal.     Summarizing,  the  phase  shift  of 

the transform relative to  the time domain  phase is  zero for  sinusoids  with 

frequencies equal  to Fourier (integer) bins,  it is 90  degrees when  the 

frequency is exactly between the bins (at the  */2  fraction), and it was 

found   to   be   proportional   for   other   arbitrary   fractional   values   using   the 

expression: 

A^-="(f)(1+sign(E))+e7C    -y^^-yi     AAI 

where:     Act)      (rad)  is  added  to  the frequency  domain  phase  to  recover  the 
f—>t 

time domain  phase,  and   Eis  the fractional  bin  value  (-1/2< £ <l/2)-   Thus, 

even  with   these  differences,   the  phase  of the  time  domain   signal   is 

recoverable   from   the   frequency   domain   transform   sinusoid   for   this   non- 

integer  period   single   sinusoid   case. 

Converting   amplitude   from   the   frequency   domain   (transform)   back   to   the 

time domain is not as easy.       The ideal relationship (using a Fourier 

Transform   and   a   continuous   signal)   between   the   frequency   and   time 

domain   amplitudes  for  the  rectangular  window   would  be  expected   to  be: 

(o \ 

i  C    i 
\    t / no aliasing 

sin(7CE) 

7C£ 
4.48 
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where  the  subscripts  refer  to   the  frequency   and  time  domains, 

respectively.     The  complication  is  due  to  aliasing  caused  by  discretizing  the 

continuous   signal,   which  biases   the   transform   magnitudes   at   all   bins, 

particularly  for sinusoids  at low  bin  numbers.     The chosen  solution was  to 

numerically  investigate  how   the  two   amplitudes  vary  with  FFT  length,  bin 

number,   and   fractional   frequency,   rather   than   analytically   developing   an 

expression  in  the form of a  summation  that  folds  ad  infinitum  around 

multiples  of  the  Nyquist  bin  number.     This  numerical  relationship  uses 

Equation 4.48  as  the basis,  then  adds  two  modifying  functions  to  account 

for   the   bin   number   and   fractional   frequency: 

(r.   \ 

V    t /aliasing 

where 

y   = 2- 
bin 

no aliasing 

l 

tanhf — 
V2k 

Y   Y 1 bin   ' E 
4.49a 

4.49b 

sign(E) 

Y =i- 
f- V2k 

k + 3 

where k is  the closest integer bin  number and   £   is  the  fractional  bin 

value.      Equations   4.49b   are   non   unique,   reasonably-accurate   functional 

fits   determined   during   the   numerical   study. 

Equations 4.47   and 4.49  demonstrate  that the  amplitude and  phase for  a 

single  time  domain  sinusoidal  signal   can  be  identified  from  analysis  of the 

R   matrix   even   for   arbitrary   (fractional)   frequencies. 
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The next task is to extend  this  scheme to  identify deterministic time  domain 

signals   composed   of  a  summation   of  sinusoids   with   fractional   (arbitrary) 

frequencies.     Since  the  R   matrix   is  inherently  a  linear  mapping   (the 

defining   conditions   for  linear  systems   hold   even   when   the   aliasing   effects 

are included)  of the time  domain  sinusoids  to  the frequency  domain,  this  is 

relatively   straightforward   to   accomplish.      It   was   previously   explained   that 

a   single   sinusoidal   signal   with   a   non-Fourier-integer   frequency   will,   in 

general,   produce  non-zero   transform   values   at   all   bin   numbers.     Thus, 

with   multiple  sinusoids  the  transform  rows   in  R   are the linear 

superposition   of  the   component   R   matrices   associated   with   each   sinusoid. 

Consider first  the  case where  the  time domain  signal  is  comprised  of two 

components   with   arbitrary   and   far   separated   frequencies   (at   bins   m   and 

n,  n»m)  and  comparable  amplitudes.     In  this  case the  large separation 

between bins m and n results in  the following behavior of the rows of R: 

the  magnitude of the elements of R   will be largest around  the 

mth±l and nth±l   rows   (depending  on  the  fractional   £ values). 

• the  leakage  effects  will  be  small  because of the  large bin 

separation. 

• each row of R   will  exhibit a beating  pattern  caused by  the 

superposition   of the   two   component   R   matrices. 

The  modulating  envelopes  at bins  m  and  n  will  have relatively  short 

periods  due  to  the  large  bin  separation,  and  the  modulating   amplitude  will 
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be small compared to the mean amplitude.    The accuracy of the estimates of 

the true  transform  magnitudes  at these two bins  (defined  as  the  mean 

amplitude of at each row)  will be reasonably unbiased because the 

segment  length   will   typically   be  much   longer   than   the   short-period   (and 

zero-mean)  envelope modulations.       The two  frequencies  and phases could 

be   independently   estimated   directly   from   each   transform   row. 

The idealized cases considered in this section were chosen  to illustrate the 

properties and uses of this R  matrix as clearly as possible.    But sinusoids 

can  be  combined   so   many  different  ways   that  examination  of  further 

specialized cases  is not productive.     In  the more general  case the 

frequencies   can   be   closely-spaced   and   the   amplitudes   non   comparable 

such that the modulating effects in each row of R   will  be  more  complicated 

and   the   objective   of   identifying   the   initial   frequency   vector   f(0)  is more 

difficult.     The remainder  of this  section  describes  a  general  methodology  to 

estimate   this   vector   for   any   multiharmonic   signal. 

Appendix  A  reviews  some  of the  algebra  of multiharmonic  signals   with 

emphasis  on  the  beating  signal   resulting  from  the  summation  of  two 

sinusoids.    It explains that the effect of a third sinusoid is to superimpose a 

dynamic   sinusoidal   modulation   to   the  usual   single   sinusoid   envelope 

modulation.     The  methodology  developed  for  estimating   f*0)  from an 

arbitrary   R   matrix  builds on these two facts  as follows: 
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• the length of the FFT used to generate (the rows of) R  can be made 

arbitrarily  long to  allow  for  a bin resolution  that isolates  no  more 

than   three   sinusoidal   components. 

• the number of time shifts used  to generate (the columns of)  R  can 

be   made   arbitrarily   long,   subject   to   stationarity   constraints,   to 

insure  that  there  are  multiple  modulation  cycles   in  each  row. 

When these conditions are satisfied, it is assumed there will be at most 

three  significant  sinusoids  contributing  to  each  row   of R;    in many 

instances  there  will  be  only  zero,  one,   or  two  significant  sinusoids 

depending   on   the   frequency   distribution   of   the   multiharmonic   signal. 

The assumption  is  that for  a large number  of time  shifts,  the beating 

envelope   corresponding   to   the   two   largest   components   can   be   successfully 

identified   even   from   a   true   3-component   envelope. 

The  methodology  proceeds  as  follows: 

1. define R(°)=R  and identify the row with the most energy. 

2. estimate up  to two sinusoidal  components for that row: 

2.1 if the envelope is fairly constant, then fit one   sinusoid 

(amplitude,    frequency,    phase) 

2.2 if the amplitude varies, then fit the best two   sinusoids   as 

follows: 

2.2.1     use  the Hilbert Transform  to  calculate the  envelope,  and 

estimate   its   (difference)   frequency 

2.2.2     estimate  the   mean   (average)   frequency 
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2.2.3    use Equation A.2 to algebraically estimate   f[(0) and f'^°\ 

i.e,  trial  approximations  to  the  two  frequencies;     use 

these  initial   estimates   to   perform   a  numerical   search 

(optimization)   to  find   the  best  parameter  estimates  for 

the two-sinusoid fit to  this  row. 

3. Append the two best estimated frequencies from the optimization to 

the  estimate  for  the  initial  frequency  vector   f(0) 

4. Calculate  component  matrices  Ri (and R2   if present)  representing 

the   transforms   for   these   two   identified   sinusoids 

5. Subtract the component matrices  from  R(°)   yielding   an   adjusted 

matrix RU) 

6. Identify the row in R^1)   with   the  largest  transform  magnitudes   and 

repeat   this   adjustment   process   until: 

6.1    each row of R(N)   has   negligible  energy  compared  to   the 

original   R^   energy,   or, 

6.2     further iterations do  not reduce the energy in  R(N). 

As  stated in  the assumptions  section on  the last page,  this methodology can, 

in  theory,  be  made  arbitrarily   accurate  depending  on  the  choices  of the 

FFT  length  and  the number of transforms  (time shifts)  used  to  generate R. 

But   these   types   of   mathematically-based   arguments   that   require   very   long 

data records  are  difficult  to  defend  and  apply  for real  world  geophysical 

data such  as the ocean  waves  emphasized  in  this  application  because of 

uncertainty   over   the   stationarity   characteristics.      This   dilemma   is   well 

known   even  in   traditional   spectral   analysis.      But  keeping  data   segments 
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Short  to  avoid  possible  temporal  changes  results  in  a loss  of frequency 

resolution   due   the   time-frequency   ambiguity.      Since   different   bandwidths 

of real  world  signals may,  and probably do, have different time scales  of 

stationarity   (for  example,   low   frequency   swell   versus   the  highest   wind 

wave  frequencies),   then  in  any  finite  length  data  segment  it  may  be 

unavoidable   that   nonstationarity   is   an   issue   at   the   high   frequencies,   while 

loss of resolution is an issue at the low frequencies.    While it may be 

possible in  some cases to low and high pass filter the data and perform 

independent   analyses   with   different   time   steps   and   segment   lengths,   this 

is  of questionable  validity  if the  spectrum  is  not clearly bimodal   (although 

further   research   is    indicated). 

With   respect   to   this   Harmonic  Phase   Tracking   technique,   errors   are 

expected in   f(0)for  wideband  signals  because  in. practice  selecting  the  FFT 

length and  number of time shifts for R   must  be  a  compromise  between 

maximizing   low   frequency   resolution   via   long   FFT   lengths   while 

simultaneously   minimizing   nonstationary   effects   at   the   higher 

frequencies   via minimizing  the  number  of time  shifts.     Of course,   if all 

components   are   known   to   be  stationary   (as   with   some  laboratory   data) 

then   both   lengths   can   be   made   arbitrarily   long. 

Since   the   nonstationary   characteristics   of   a   signal   are   typically   not 

known   a  priori, the general rule is to keep the segments as short as 

possible.     This  conservative  approach  may  result  in  a  wider  than 

necessary   frequency   resolution   from   the   FFT,   with   true,   closely-spaced 
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components   falling   below   the   resolution   limit   and/or   several   components 

within one FFT bin.  At such bins the proposed  methodology to  estimate 

f(0)can   introduce  errors,   even   for  analytical   signals   defined   as   finite 

summations  of [constant parameter]   sinusoids.     The  source  of this  error  is 

the present need to limit the model for each row of R to at most three 

significant  sinusoids.     This practice will  estimate biased parameters  if two 

sinusoids  are  within   the  resolution  bandwidth  or  if three  or  more 

components   are   present   with   significant   amplitudes.      These   component 

biases  will  in  turn bias  the adjustment process.     However,  since  the 

subsequent   Harmonic   Phase   Tracking   technique   adapts   f  as  necessary, 

any   errors   in   this   initial   vector   simply   increase   the   number   of  iterations 

and   are   therefore   not   considered   critical. 

All   of  the   methodologies   presented   in   this   Chapter   require   quantitative 

definitions   and  algorithms  before  they  can  be  applied  to  measured   data. 

Appendix   C   describes   how   this   theoretical   methodology   was   implemented 

in   MATLAB,   including   descriptions   and   rationalizations   for   all   the 

algorithms   and   threshold   values. 

Chapter  5   illustrates  the  performance  of this  new  technique  as   applied  to 

various   types   of   analytical   signals,   harmonic   and   multihärmonic,   with 

constant   and   non   constant  parameters,   and   with   and  without   noise. 

Comparing   the   numerically-estimated   and   exact   (known)   parameters   for 

these cases  provides  a  firm  basis  for the  analysis  of laboratory  and  ocean 

waves in Chapters 6 and 7. 
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CHAPTER 5 

VALIDATION OF HARMONIC PHASE TRACKING USING 

ANALYTICAL   SIGNALS 

5.1        Chapter    Overview 

The  motivation  for  the development  of the  Harmonic  Phase  Tracking  (HPT) 

technique was  the  need  for  a  more  capable  signal  processing  tool  for the 

analysis of stochastic ocean wave fields in time and space.     The 

mathematical   and   numerical   phase   of  that  development   described   in   the 

last  Chapter  indicated  that  HPT  indeed  has  valuable  new  capabilities  worth 

investigating   compared   to   existing   techniques.      Typically,   the   objectives   of 

the next logical  step  in the development of any new  technique such as HPT 

are   to:   (1)   demonstrate   accuracy   using   analytical   and/or   established 

experimental   data,   and   (2)   demonstrate   robustness   and   uncertainty 

performance.      Those   characteristics   are   demonstrated   and   evaluated   in 

this   Chapter   using   analytical   signals. 
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Normally,  it is sufficient in the validation phase to present only  a few 

examples   that   illustrate  performance   and   applicability.      However,   ocean 

waves   are   very   complex,   with   slowly-varying   nonstationarities   at 

unknown   time   scales   that   vary   with   frequency,   and   correlations   to 

unknown  length  scales.     So,  before HPT results can be  accepted with 

confidence for ocean  waves,  a very  thorough  validation  step  must be 

performed  to  establish how  HPT  models  every one of these expected  signal 

characteristics.     This   will   satisfy  the  first  objective  regarding   accuracy. 

But   that   answer   is   incomplete;      further   fundamental   questions   still   remain 

regarding   robustness.      For   example,   does   the   technique   converge   to   one 

unique  answer  for  all   signal   types,  or  does  a  change  in   the  initial 

conditions   or   small   perturbations   to   the   data   radically   effect   some 

estimates?     And if so,  under what circumstances,  and by how much?     And 

how does a discrete model such as HPT handle a signal with a possibly 

continuous  spectrum?     If any  doubts  remain  on   any  of these  questions, 

then  the  use  of any  new  unproven  technique  like  HPT  on  signals  with 

unknown   characteristics   should   be   considered   suspect.      For   those  reasons, 

a   wide-ranging   validation   study   was   undertaken   using   a   variety   of 

analytical    signals    with    known    characteristics. 

These   two   comprehensive   objectives   make  this   is   a   long   and   important 

Chapter.     A  brief outline of the three  sections  that make up  this  Chapter is 

presented    next. 
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'                        Section 5.2  addresses the  applicability  of HPT  to  analytical  signals  with 

varying   characteristics.     The  first  numerical   example  uses   a  summation  of 

19  constant  parameter  sinusoids  without  noise  to  demonstrate  how   the 

technique   handles   a   deterministic   multiharmonic   signal.      Subsequent 

signals   are  analyzed  in  this   section  that  exhibit  constant  and  non  constant 

parameters and additive white noise.    The objective of Section 5.2 is to 

demonstrate  that  Harmonic  Phase  Tracking  is  capable  of modeling   all 

expected  types  of signals,  as  summarized  in  the following  table: 

Subsection Signal   Descriptor 

5.2.2 summation  of constant  parameter  sinusoids 

5.2.3 single  sinusoid  with  time  dependent  amplitude 

5.2.4 
one and two sinusoids with time dependent 

(chirping)  frequency 

5.2.5 bandwidth-limited   white  noise   only 

5.2.6 summation   of constant  parameter  sinusoids 

with noise 

Bee 

thei 

(as 

wh 

sec 

sue 

,ause  the  estimates  from  HPT  converge  asymptotically,  they   are 

refore   dependent   on   a   variety   of  functions   and   convergence 

reviewed briefly in Appendix C).     So the next logical question  t 

at  is  the  numerical  robustness  and  stability  of the  technique? 

ond  objective  is   addressed   in   Section  5.3   using  representative 

h   as: 

115 

criteria 

o ask is: 

This 

studies 



• affect   of  segment   length   versus   frequency   resolution   (i.e,   time- 

frequency    ambiguity) 

affect  of  "errors"   in   the   initial   frequency   vector  estimate 

Where   appropriate,   discussions   are   included   regarding: 

• accuracy  of the  estimated  parameter  set  versus  the  true  set, 

• convergence    characteristics,    and 

• comparison   with   traditional   (FFT)   spectral   estimators   using   the 

same  amount  of information   (i.e.,   comparable  length   of data 

vector). 

The  examples  in  these first two  sections  were  selected  to  demonstrate  the 

universality   and   applicability   of  the   technique   with   as   many   types   of 

signals   as   reasonable,   given   the   length   of  this   Chapter,   rather   than   to 

exhaustively   study   the  performance   of  HPT   by   concentrating   on   only   a 

few   signals.     It  was   considered   more  important  to   establish   credibility   that 

HPT   robustly  handles   ail signal  characteristics  than it was to  study 

optimum   convergence   strategies,   minimum   computation   algorithms,   or 

extensive   numerical   studies   to   identify   error   variance   characteristics   for 

each   of  the   signal   types.      Results   are   presented   graphically   whenever 

possible. 
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Section  5.4  reviews   the  conclusions of this  Chapter  for  analyzing 

deterministic  and  stochastic  signals. This  summary  review   then   serves   as 

the  launching  point for  the  analysis of laboratory  waves  in  Chapter  6  and 

real  ocean waves in Chapter 7. 

5.2   Applicability    of    Harmonic    Phase    Tracking    to    Analytical 

Signals 

5.2.1 Description    of    Multicomponent    Analytical    Signal 

The  first  fundamental   analytical   studies   were  conducted  using   a 

multicomponent   analytical   signal   comprised   of   19   arbitrary   constant 

parameter sinusoids  as  summarized  in Table 5.1.     While the rank and 

parameters  were   arbitrarily  selected,   the  intent  was   to  produce   a   signal 

with   the   following   attributes: 

• reasonably   wide  frequency  band   (note  the  ratio   of  approximately   5 

between   the   highest   and   lowest  periods) 

• emphasize  low  bin  numbers  that  have  the  least  number  of cycles 

in  a  given  segment  and  are  therefore  the  most  difficult  to  identify 

• vary  the  bin   spacing  between   adjacent  components   to   study   the 

bin   resolution    (i.e.,   the   time-frequency   ambiguity)   performance 

of the  Harmonic  Phase Tracking  technique     (e.g.,  the  7th and 8th 

components   are   very   close,  while  the   16th  is  isolated) 
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No. Bin   Value Period Amplitude 

1 4.6875 27.307 1.00 

2 5.1875 24.675 1.00 

3 5.5882 22.905 0.50 

4 8.2500 15.515 0.50 

5 8.8750 14.423 1.00 

6 9.2353 13.860 0.50 

7 9.8750 12.962 1.00 

8 10.1250 12.642 0.50 

9 10.7647 11.891 1.00 

10 11.7500 10.894 1.00 

11 12.1250 10.557 0.50 

12 12.4118 10.313 1.00 

13 12.7500 10.039 1.00 

14 13.1875 9.706 0.50 

15 13.7059 9.339    • 0.50 

16 16.4375 7.787 1.00 

17 21.6875 5.902 0.50 

18 22.0625 5.802 1.00 

19 22.7647 5.623 1.00 

Table   5.1      Constant   Parameters   for   Multicomponent   Analytical   Signal 

Note to Table 5.1: The second column is defined relative to a 128- 

point segment length; integer values correspond to bin 

numbers for a 128-pt FFT. For example, the first sinusoidal 

component above has 4.6875 cycles every 128 points. The units 

for the third column are number of points (or, seconds if a unit 

time step is  assumed for the time series) per cycle. 
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•   vary  the  relative  amplitude of adjacent  components  to  study 

leakage   effects. 

The  relative  phases  varied  arbitrarily  based  on  the  starting  index  of the 

segment being  analyzed  so  their  initial   values  are  not particularly 

relevant  and   are  not  listed  here. 

5.2.2        Representative    Analysis    of    Multicomponent    Signal 

The objective  of this  first case is  to  illustrate  the basic performance  of the 

Harmonic  Phase  Tracking   technique  without   complications   due   to   noise   or 

time-frequency   ambiguities.     This   latter  complication   was   avoided   by 

purposely   defining  a  segment  length   that  was   long  enough   to  yield   a 

resolvable   bin   width   smaller   than   the   known   minimum   bin   spacing   in   the 

signal of 0.25  (between the 7th and 8th  components).     Using Equation C.5,  a 

segment length  of 360  points  was  selected,  resulting  in  a  "safe"   minimum 

bin  spacing  of 0.177. 

Figures  5.1   through  5.8   illustrate  the  results  for  this   idealized   stationary 

case.     Since some of these same figures  are used  throughout this  and 

subsequent  Chapters,   a  full   description   is  given  for  each,   including  what 

signal   characteristics   are   best   identified. 
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Figure  5.1.        Time  domain   representation  of signals.    The upper 

subfigure   displays   the  360-point  segment   (dotted   line),   with   the  final 

estimated  time  series  superimposed  (solid  line).     The  lower  subfigure 

displays  the  error  between  the  original  and  fitted  time histories  as  a 

solid  line   superimposed  over  the  original   segment   (dotted   line)  for 

reference.     It is  evident from  both  subfigures  that for this  first  case  the 

Harmonic   Phase   Tracking   technique   accurately   matched   the   time 

domain   representation   of   the   segment. 

Note also that the total number of data points used for this fit is actually 

540  points  including   the  90  points used  for  the  forward  and  backward 

time  shifts.     The  interpretation  of how  many  data points  are  used  for 

the  HPT  estimates  is  discussed  further in  Chapter  8. 
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a. Original (....) and Estimated ( ) Signals 

■150     -100      -50 0 50        100       150 
Time Index 

b. Original Signal (....) and Error ( ) 

Error Variance = 0 % Bin Resolution = 0.18 

■150     -100 -50 0 50 
Time Index 

100       150 

Figure 5.1    Time Domain Comparison of True and Estimated 

Multicomponent   Analytical    Signal 
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Figure   5.2.        Bin   (Frequency')   domain   representation   of  signals.    This 

figure  compliments  the  time  domain  information   in  Figure  5.1   by 

displaying   amplitude   versus   bin   number   (proportional   to   frequency). 

Note that this figure does not   display   energy  as   in  the  usual  frequency 

domain plot of the  spectrum.     Consider a 2 component signal  with 

sinusoidal amplitudes of 1.0 and 0.25.    The amplitude of this second 

component is  enough  to  make the time  series  envelope vary  over  a 

range from 0.75  to  1.25,  and  its presence would be readily recognized by 

inspection  of the time series.     On the other hand,  the significance of 

this   second  component  would  be  less   apparent  from   the  spectrum   since 

9 
its  ordinate would be only  (0.25)    or 6.25 percent as large as the main 

ordinate. 

Therefore, this study uses plots of amplitude versus frequency instead 

of   energy   versus   frequency   as   more   representative   of   the   relative 

significance   of   component   amplitudes. 

Exact, HPT-estimated, and FFT-estimated amplitudes are superimposed in 

Figure 5.2.    The FFT amplitude is defined as: 

e(fJ|NFFr) = (^JffT)|X(fJ) 5.1 

where:   c=discrete amplitude vector which  is  a function  of the FFT 

length   NFFT (here,  512  points  was  used   as  the  closest power-of-2  length 

to the 540 points used for the HPT estimates), fj=jth   discrete  Fourier 
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frequency,   and   IX(fj)l=FFT  ordinate of the signal.     A  simple rectangular 

window  was used  for this  spectral  function,  and  unit time  steps  are 

assumed  with  no  loss  of generality.     A  similarly-defined FFT amplitude 

function  of the  error between  the  original  and  HPT-fitted  time  series  is 

also plotted as a dashed line. 

Figure  5.1   showed  that HPT  accurately  fitted  this time domain  signal. 

That is, of course, a desirable condition for a good estimator.    But Figure 

5.2   illustrates   the  key  feature  of this  new   technique  -   it  demonstrates 

that Harmonic   Phase   Tracking   is  capable  of accurately   identifying   the 

true   set  of components  (rank   and frequency  values).    It did not 

converge   to   an   arbitrary   set   of   [orthogonal]   components   with 

arbitrary  rank   (the  category   that  Fourier  Series   fits   in) just   to   fit  the 

time domain  signal.     This  is  the first demonstration  of this  unique  and 

powerful   feature   of  the   Harmonic   Phase   Tracking   technique,   and   this 

ability   will   be   the   central   focus   of  the  remaining   comparisons   in   this 

and   subsequent   Chapters.     The   estimated   and   true   frequencies   and 

amplitudes  for this case  are  shown in  the Table 5.2. 

It  is  informative  here  to  briefly  discuss  under  what  conditions  a 

traditional  FFT-based  spectrum  such  as  the  one defined  in  Equation  5.1 

would  identify  these   19  components.     First,  it would  require  a  minimum 

FFT  length  of 512 points  to reduce the resolvability  to the necessary 

0.25  bin  spacing  (or,  practically  speaking,  more  than  512  points  to 

124 



Estimated  Bin 

Number 

True  Bin 

Number 

Estimated 

Amplitude 

True 

Amplitude 

4.687 4.688 1.000 1.000 

5.187 5.188 0.998 1.000 

5.590 5.588 0.498 0.500 

8.250 8.250 0.501 0.500 

8.875 8.875 1.002 1.000 

9.235 9.235 0.500 0.500 

9.862 9.875 0.936 1.000 

10.150 10.125 0.435 0.500 

10.765 10.765 0.999 1.000 

11.749 11.750 1.000 1.000 

12.121 12.125 0.488 0.500 

12.414 12.412 0.990 1.000 

12.751 12.750 0.997 1.000 

13.187 13.188 0.500 0.500 

13.706 13.706 0.502 0.500 

16.438 16.438 1.000 1.000 

21.687 21.688 0.500 0.500 

22.063 22.062 1.001 1.000 

22.765 22.765 0.999 1.000 

Table  5.2     HPT-Estimated  and  True  Parameters  for  Multicomponent 

Analytical    Signal 
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slightly  exceed  that  resolution  to  minimize  leakage).     That  minimum 

number  of points  seems  to  correspond  favorably  with  the 540  used by 

the  harmonic  phase   tracking   technique.   But  even   that  FFT   length 

would   only  insure  that  one  sinusoid  was  contained  somewhere  within  a 

bin - however, the  exact frequency,   amplitude and phase  would still  be 

unknown.     A second fundamental flaw comes in the next step, 

specifically,   that  it  is   necessary  to   calculate  several   transforms   over 

independent  segments  in  order  to  perform  ensemble  averaging.     This  is 

unavoidable   when   the   signal   properties   are  unknown.     Chapter   8 

presents   more   information   on   uncertainties   for   these   and   other 

estimators. 

Fifnrp.  3.3.       Reduction  of the Error Snectral  Function.    This figure 

displays  how  the  [FFT-based]   spectrum  of the  error  was  decreased 

versus  HPT   iteration.     The  ordinates   are  normalized  by  the  peak 

ordinate  of the  FFT  amplitude  function  of the  signal.  The  orientation   is 

such  that  the final  error function  is  the front row.     Note how  the  error 

decreases  for  each  bin  number  as  the  iterations  progress.     As  detailed 

in  Appendix  C,  the  final  criteria  for convergence  are  subjective;     in 

this   case   the  small   residual   signal   was  considered   asymptotically 

converged   and   not   significant.     This   residual   error   function   can   be 

useful   in   verifying   whether   this   component   signal   (in   essence, 

"noise")  matches the assumptions made in the modeling;     it can  also be 

informative   for   showing   which   frequencies   are   difficult   to   fit,   which 
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Bin Number 

Iteration 

Figure 5.3     Distribution of Normalized Residual  Error versus Bin 

Number   and   Iteration   Number   for   Multicomponent   Analytical 

Signal 
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implies   that   there   are  no   well-formed   sinusoids   in   that   frequency 

region.     Note also that this HPT analysis required   15  iterations. 

Fipnrp, 5.4.       F.volution  of the RMS ErrorCTime Shift) versus Iteration, 

The  rms   error  versus   the  forward/backward   time   shift  is  calculated   as 

follows:   start with  the  initial  segment of the time history  and  the  initial 

frequency  vector;     fit  amplitudes  and  phases;  and  calculate  a  root- 

mean-square   error   Go-     Shift the time series forward  and backward  and 

recalculate a  Gj for each segment.    Plot CTj versus the time shift as the 

furthest-back  row   in  this   figure  (i.e.,  first  iteration).     Then,   after 

modifying   the  frequency   vector,   repeat   and  replot  the  new   Gj   vector  as 

the second row.     Repeat for each iteration (here,   15).     Thus,  the row  in 

the  forefront  represents   the  error  in   the  final   fit  as  the  time  series  is 

shifted   forwards   and   backwards. 

This  final  row  can  be  interpreted  as  a  scalar  measure  of the  stationarity 

of  the  frequency   vector,   but  not  necessarily   of the   signal   because   the 

amplitudes   and   phases   are   independently   fitted   for   each   shifted 

segment;     those  functions  can  be  inspected  for  stationarity  as  discussed 

in  the  text for  the  next  figures. 
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100 
Iteration 

Starting Index 

Figure  5.4     Error  in  Fitting  Each   Shifted   Segment  versus   Iteration 

Number   for   Multicomponent   Analytical   Signal 
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Figure  5.5.  FTPT-hased   Amplitudes   versus   Time  Shift.   This is a plot of 

amplitude   versus   frequency   (bin   number)   as   the   segment   is   shifted. 

Since the frequency vector is  constant for this  set of shifted HPT 

results,   then   constant  amplitudes   on   that   figure   would   strongly 

indicate  a  high  degree  of stationarity  in  the  signal  components.     In 

fact,  the  information  available  in  these  last  two  figures  could  provide 

new   quantitative   definitions   for   various   vector   measures   of 

stationarity   that  may   be   superior  to   presently-used   scalar   and   moment 

measures   for   multiharmonic   signals   (discussed   in   the  last   Chapter). 

Starting Time Bin Number 

Figure  5.5     Stationarity  of Amplitudes  versus  Starting  Time  for 

Multicomponent    Analytical    Signal 
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Figure   5.6.      Sample  Parameter   Convergence   versus   Iteration.    This 

figure   illustrates   convergence   of   one   representative   component 

during   this  fitting  process.   The  three   subfigures   show  how   the 

frequency,   amplitude,   and   phase   converged   versus   iteration   number; 

see Table 5.2 for the true and asymptotic numerical values. 

Figure  5.7.     Signal   Extrapolation   Using  HPT Parameters.    While the 

Harmonic   Phase   Tracking   technique   does   require   forward   and 

backward   time   shifts   to   identify   the   frequency   vector,   the   "reference" 

amplitude  and  phase  vectors  at  each  iteration   are  calculated   using  only 

the  center  segment  of the  time history  (here,  the  360  point  segment). 

It is  suggested  that using  those  "center"   amplitudes  and  phases  to 

extrapolate   the   signal   beyond   the   center   segment  would   serve   as   an 

alternative   test  of  accuracy   and   stationarity   for  the   estimated 

parameter  set.     The purpose of this  figure  is to  illustrate  the  concept. 

The  upper  subfigure  shows  backwards  extrapolation   (to  the  left  of the 

dashed  line  at  the zero  time  index)  while  the lower subfigure shows 

forward extrapolation (to the right of the dashed line at 360).     The 

original  data  is  the  solid  line while  the  fitted/extrapolated  data  is  the 

dotted  line (masked  here by  the solid  line).     An  alternative 

extrapolation   technique   based   solely   on   stationarity   of   the   frequency 

vector  is  discussed  in  the final  Chapter. 
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Bin Number vs Iteration 
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Figure  5.6     Sample Convergence  of HPT  Parameters  for 

Multiharmonic    Analytical    Signal 
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Regarding  Figure  5.7,   note  that  extrapolation   is   undefined  for  Fourier 

Series   representations,   which   reinforces   the   fact   that   Fourier   coefficients 

should   not   be   confused   with   physically-present   harmonic   components. 

In  summary,  this   first  set  of figures  for  the   multiharmonic  signal   shows 

that  the  Harmonic  Phase  Tracking  technique  is  robust,   accurate,   and 

stable  when  properly  applied   to   a  stationary,   deterministic   signal 

comprised of a finite  summation of constant parameter sinusoids.     That is 

an  important  first  conclusion   to   establish.     This  analysis  using  uncompiled 

code in MATLAB 4 required under 10 minutes on a Sun SPARC 10 unix 

computer.     The   condition   numbers   of  the  real   and   imaginary   basis 

matrices   when   converged   were   only   3.0,   indicating   that   the   high 

correlation   (due   to  the  close  frequency   separation)   between   some   of  the 

components   did   not   significantly   affect   the  results.     Performance   of HPT 

when   there   are   components   closer  than   the  resolution   limit  is  reviewed   in 

Section  5.3. 

5.2.3        Representative    Analysis    of    Single    Sinusoid    with    Time 

Dependent     Amplitude 

The   previous   analysis   searched   for   a   multicomponent   deterministic   signal 

defined   using   constant  parameter   sinusoids.      This   and   the   next   subsection 

investigate   the   effect   of   temporal    (nonstationary)   perturbations   in   the 

frequency    or   amplitude. 
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HPT returns  a very  interesting  estimate for  a single sinusoid  with  a 

linearly-varying   amplitude   (but   fixed   frequency   and   phase).      Any 

segment of this signal can be modeled using a local, zero-mean time t'  as 

x(t) = (a0 + a t) sin(2rc f t +G) 
V 5.4 

= ao(l+m ri)sin(27tftl+e) -T<ti<T 

where   m = a /a  .    This is a very natural way to model the signal since  ao 

is  simply  the  mean  amplitude  over  the  segment  that  a parameter 

estimation technique such as HPT, MUSIC, etc. would find;    Fourier Series 

could find  it as well but only  in the special  case when the frequency 

corresponded  to   an  integer  Fourier  harmonic.     Define   ao=l   for  simplicity 

and  rewrite  Equation   5.4   as  the   sum  of stationary   and  nonstationary  parts: 

x(ti) = sin(27üftl+e) + [m t!]sin(27Tft!+e)       -T<ti<T 5.5 

The  question  is,  how  does  the  nonstationary  term  affect  the  estimated 

parameters  and rank?    The answer is that Harmonic   Phase   Tracking   is 

unaffected by  the presence  of this  second term,   regardless  of the  relative 

values of a   and a T.     While this seems like an unexpected response, it 

can   be  justified   using   two   independent   arguments. 

For  illustrative reasons,  first consider the case  when  the phase  is  zero.  The 

nonstationary   function   is   then    t!sin(27lf£),  which  is  an   even  function. 

This  is  straightforward  to  visualize,  since  the basic  sinusoid  must be 
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increased  in  phase for positive  t\  yet  decreased  (out  of phase)  for  negative 

t';     thus  this  "correction"  term has  a  180 degree phase discontinuity  at the 

origin.  There is no single   frequency  sinusoid   that  can   model   this   function 

because  of the  discontinuity at zero.     This  argument holds  equally for 

cosinusoidal   signals   also. 

Secondly,  this   risin(27rft)  function, with  the  180 degree phase 

discontinuity  at  the  center  time,  looks  exactly  like  a  beating  signal 

produced by two equal  amplitude sinusoids as reviewed in Appendix A.     So 

it is natural to next ask if HPT attempts to model this correction term using 

two  instead of one sinusoid.    Here there are two answers.    If thetsin(27cf t) 

function   alone   is  fitted,  then  yes,  the  technique  will  identify  two 

components   described   by   the   following: 

equal   amplitudes, a2 

180  degree difference in  phases;     the envelope  is  zero  for  local 

time  t'=0,  requiring   x (o) + x (o)=0 , or, sin(8 )+sin(02) = 0    which 

in   turn   requires   0   =0 +7t. 

but   most   crucially,   the   envelope   period   is   very   long,   requiring 

that   the   two   component  frequencies  be  very   close.      Strictly 

speaking,   this   spacing   is   undefined,   because   the   linear   variation 

in   the   envelope   corresponds   to   an   infinite   number   of   envelope 

periods   and   envelope   amplitudes   (using   the   expansion 

a sin(2n ft) = a[(27C ft) + 0 (t3) 1 ~(2jta£) t). 
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Harmonie Phase  Tracking  avoids  this   ambiguity  problem  and  finds  a  two 

component  best-fit because  the  solution  is  based  on  total  rather than 

standard  least  squares.     Incorporating   the  right  hand   side  vector  into  the 

basis  matrix pulls  the  "projection  vector"  out of the range of the usual 

basis matrix (where there is no solution).    As a result, the HPT solution 

converges   to   two   (equal)   component   amplitudes  whose  sum  by   definition 

becomes the maximum amplitude of the envelope.     With the known  linear 

slope   and   the   amplitudes   arbitrarily   quantified   this   way,   the   technique 

can   resolve   the   ambiguous   amplitude-frequency   product   and   subsequently 

converge  to  a  set of component  frequencies  whose  bin  spacing  is 

consistent  with   these   amplitudes   and   whose   average  frequency   is   the   true 

signal  frequency.     Also,  the phases  will  show  a  180  degree difference  as 

required.    This is a good illustration of how the use of total least squares 

greatly   increases   the   stability  of  the   technique  for   real-world   signals   (i.e., 

it  decreases   the  variance  by   introducing   some  bias). 

Now return  to the issue of how  HPT  analyzes the complete signal  defined 

by   the   stationary   and   linearly-varying   components   in   Equation   5.4.      For 

simplicity   assume   a   > a T   (to  avoid  an  awkward  phase  discontinuity  in 

the signal  when the amplitude switches  sign).     In  these cases HPT  will  only 

estimate  one   component  with   the  (correct)   mean   amplitude   ao  at the true 

frequency.        The  explanation  for this   is  that  HPT  finds  the predominant 

component   and   frequency   (the   a component)  first.     It then tries  to  model 

the  2  beating   components,  but  the  estimated   frequencies   are  often   too 
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close  to   the  existing  mean  frequency   and   they  are  therefore  not   inserted 

by the technique.    The fact that HPT models or does not model the 

nonstationary   component   of  the   signal   depending   on   whether   there   is   a 

second   component   present   further   illustrates   why   the   technique   is   not 

strictly   a   "linear   operator." 

Is  the fact that the technique does not model  such  a nonstationary  signal 

component a weakness?    If the sole measure applied is the rms error in the 

time domain then, yes, this is a weakness.    But it has been stated that a 

unique  feature  of this  technique  is  its   ability  to  identify  the  true  number 

of sinusoids  (i.e.,  the rank)  in  a  signal,   and  by  this  measure  this  inability 

to  add extraneous  components to model  the change in  amplitude is in fact a 

strong   advantage.      Viewed   another  way,   this   technique   is   complimentary 

to  techniques   such   as  Fourier  Series,  which  has  the  advantage  of 

accurately   modeling   any   physically-realizable   time   domain   signal   but 

with   the  corresponding   disadvantage  of doing   so  with   a  set  of components 

that  very  rarely have  any  physical  meaning.     The  final  decision  as  to  the 

superiority  of one  technique  over  another  cannot be  made  here  -  it 

depends on  the objectives of the analyst and the problem at hand.     But it 

can  be  said  that by  offering  a  different  set of features  the Harmonic Phase 

Tracking   technique   has   already   established   its   value. 

The   preceding   discussions   have   focused   on   linear   variations   in   amplitude. 

If  higher   order   amplitude   variations   such   as   quadratic   and   cubic 
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variations   are   present,   this   minimizes   the   amplitude-frequency   ambiguity 

and   Harmonic   Phase   Tracking   interprets   the  nonstationary   signal   as   a 

pair   of  beating   sinusoids   rather   than   one  predominant   sinusoid,   and 

subsequently  it  does  result  in   an  approximate  fit  to   the  nonstationary 

signal   (using   the  time   domain   error   measure). 

The   fact   that   the   technique   interprets   changes   in   amplitude   differently 

depending   on   whether  they  are  linear  or  not does  introduce  some 

complications   to   analyzing   signals   with   unknown   properties.      Consider   a 

signal  defined  as  a  pair  of closely-spaced,  unit  amplitude  sinusoids  such 

that  the  length  of data  selected  for the  analysis  window  is  approximately 

60  degrees  of the envelope cycle.     (Recognize immediately  that for most 

applications   this   would   be   an   extraordinarily-short   segment,   representing 

only  1/6 of a cycle for that signal;    put another way, it is 6 times shorter 

than   the   length   corresponding   to   a  comparable  bin   resolution   of  Fourier 

Series.)     If the  segment  is  centered  across  an  envelope  crest,  then  the 

signal  looks like one  sinusoid with a very small change in amplitude;    HPT 

will  estimate one sinusoid,  with  a mean amplitude of approximately   1.8,  at 

the  mean   [beating]   frequency.     Shift  the  segment  forward  to   where  the 

envelope   appears   like   a   linearly-decreasing   amplitude   between   the   crest 

and a node;    now the technique estimates one  sinusoid,  at the same mean 

frequency, but with an  amplitude of  1.0  (since it does not see the 

essentially   linear   amplitude   variation).      Shift   the   segment   again   to 

straddle a node;     now  the technique will  estimate  two    components, 
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approximately  equal  to   the  two  true  frequencies,  but  with  a  slightly  biased 

set of amplitudes  (slightly  lower  than  one  depending  on  the  length  of the 

data   segment). 

Thus,  three  analyses  of the same signal  produced  three  qualitatively 

different   estimates.     While   this   is   not  particularly  desirable  behavior, 

recall  that  it happens  only  when  the  length  of the  analysis  segment  is 

well  below  normal  practice.     However,  since  there  is  never  a  guarantee 

that this  type of very  low  frequency component will  not be present  in  a 

finite  segment of a  signal   (unless  careful   low  pass  filtering  is  applied   to 

the longer record),  it is  valuable to  understand how  it is modeled  and  how 

it   may   affect   other   neighboring   component   estimates.      If  multiple 

analyses   are done  on  sequential   segments  of the  data,   there  would  be  an 

observable   oscillation   in   the   frequency   domain   around   one   dominant 

frequency   that  would   allow  for  confident  identification  of the  fact  that  the 

signal  contained  two sinusoids.     This might not be as evident if a  large 

level  of noise was present,  so  this  ensemble inspection process  may  not be 

as   straightforward   as   it   seems   for   interpreting   real-world   signals. 

Observing   such   inconsistencies   in   the   frequency   domain   results   would 

strongly   indicate   that   there   was   a  potential   resolution   ambiguity   around 

that  frequency  region.     The  solution  would  be  to  repeat the  analyses  with  a 

longer  test  segment  to  reduce  the  minimum  bin  spacing  to  decrease  the 

resolution.      These  results   are   further  examined   in   Subsection   5.3.1. 
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The Fourier  Series representation  of a  segment of this  type  of 

nonstationary  signal   is  best  understood  from  inspection   of the  time  series 

defined  in  Equation  5.5.     If the  fundamental  frequency  and  segment 

length  do  not  correspond  to  a Fourier harmonic,  then  the first  term  in 

Equation 5.5  will  itself produce finite ordinates  at all  the Fourier bin 

numbers.     Second,  the  second  term  in  that  equation  (illustrated  in  Figure 

5.16)   is   certainly  nonsinusoidal   so   that  the  transform  will   require 

ordinates  at  all   the Fourier bins.     So,  a  single  Fourier  transform/spectrum 

of the total  signal  would be the sum of these two  "wideband"  transforms, 

and  accordingly  it  would  be  very  difficult  to  interpret. 

The  Harmonic  Phase  Tracking  technique  required   15   to  35   iterations   for 

the  types  of signals  and  segment lengths  used  in  these  studies. 

5.2.4        Representative    Analysis    of    Sinusoids    with    Time 

Dependent      Frequency 

The  second  type  of nonstationarity  that  would   violate  the  assumption  that 

the   signal   is   a   [summation  of]   constant  parameter  sinusoid  occurs  when 

the   frequency   (or,   equivalently,   the  phase)   varies   with   time. 

Accordingly,   signals   with   linear   and   oscillatory   frequency   variations   (but 

constant   amplitude   and   phase)   are   investigated   in   this   subsection. 
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The  fundamental  signal  over  any  time  interval  of length  2T  is  defined  for 

a   linear   frequency   variation   by: 

x(ri) = sin(27t[l + mt']fe+e) -T<ti<T 5.6 

where a unit amplitude is used  with  no  loss of generality. 

In  the last  subsection  it  was  shown  that  the  Harmonic  Phase  Tracking 

technique  either  did   not  model   an   amplitude   variation   (for  linear 

variations),   or,   it   naturally   approximated   the   change   using   two   constant 

parameter  sinusoids.      In   contrast   to   that   nonstationarity,   modeling   this 

continual   variation   in   frequency   is   numerically   more   difficult.      Just   as 

with   the   modeling   of   nonstationary   amplitude,   the   technique   uses 

combinations   of   constant   parameter   sinusoids   to   approximate   the   varying 

frequency. 

Conclusions here are not as  direct as with  the former case.     Some 

observations   are   possible: 

•    if  the  frequency   variations   are   small   (less  than   3   percent),   then 

the   technique   estimates   only   one  component   at   the  mean 

frequency  for  that   segment.     The  reason   is  that  the  error  term 

between   the   original   and   this   rank-one   fit  signal   looks 

approximately   like  a  beating  signal   with   a  node  at  the  center,   and 

the  technique  follows  the  same  behavior  as  described  in  the  last 

subsection    for    amplitude   nonstationarity. 
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unlike   the   situation   for   amplitude   changes,   modeling   larger 

frequency   variations   starts  with   a  rank-1   sinusoid  but  adds  other 

sinusoids  at neighboring  frequencies.     For example,  for  a single, 

unit   amplitude   sinusoid   with   a   five  percent   frequency   variation, 

the   Harmonic   Phase   Tracking   technique   estimated   the   following 

rank-3   fit: 

Bin   Number Period Amplitude Phase   (deg) 

4.334 29.54 0.113 3 

4.600 27.83 0.991 91 

4.872 26.27 0.114 -5 

Note  how   the  "sideband"   components  have  equal   amplitudes  and  phases 

associated  with  an  even,  beating  signal.     Other  studies  with  larger 

frequency   variations   resulted   in   even   higher   rank   approximations.      The 

following  table  shows  a representative  fit  from one  of those  studies  that 

used a  180 point single unit amplitude sinusoid at bin  10 (relative to a 64- 

point FFT)  with  a  10 percent  frequency  change over 300  points: 
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Bin   Number Period Amplitude Phase   (deg) 

9.37 6.83 0.280 85 

9.57 6.69 0.516 -129 

9.91 6.46 0.612 -48 

10.31 6.21 0.616 -73 

10.48 6.11 0.401 156 

This   rank-5   estimate   is   qualitatively   quite   different   from   the   original 

rank-1   nonstationary  sinusoid,   yet  the  good   time  domain  fit  shown  in 

Figure  5.8   attests   to   its   absolute  accuracy.     The   instantaneous   frequency 

was  calculated  using  Equations  A. 12  through  A. 14 for both  the  original   and 

the  estimated  signals  and  the  agreement was  excellent.     Both  of these 

measures  confirm  that  the  HPT  fit  is  accurate,   at  least  within  the  chosen 

segment.      Note   that   accurate   extrapolation   is   not  reliable   using   constant 

parameter   harmonics   when   the   signal   is   nonstationary   as   in   this   example. 
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a. Original (....) and Estimated ( ) Signals 

Time Index 

b. Original Signal (....) and Error ( ) 
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Figure  5.8     HPT Estimated  Components  versus Bin  Number for 

Chirped   Sinusoid   with   10%   Frequency   Nonstationarity 
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But  what   is   the  geometrical   basis  for  this  particular  combination   of  five 

constant  parameter   sinusoids   found   using   Harmonic   Phase  Tracking?      The 

answer  can  be found  the  subtle beating  behavior of the HPT  estimate 

evident in Figures 5.8.     As described in Appendix A, recall that 

instantaneous  frequency  is  a  function  of  the  "local"   energy   of the   signal 

components   (where   "local"   accounts  for  the   time  dependent  term   in 

Equation A. 15).    Now imagine a signal comprised of four sinusoids where 

the first pair makes  a beating  signal  such  that the  envelope  starts  at  a 

crest and  ends at a node over the segment being  analyzed,  and the  second 

pair  makes   a  beating   signal   with   a mirror  image  envelope  (i.e.,   crest  at the 

end).     At  the beginning  of the record  the  first pair  would  dominate  the 

instantaneous   frequency   calculation,   while   the   second   pair   would 

dominate at the end of the segment.    Last,  add a fifth sinusoid that 

modulates   both  envelopes   such   that  there  is   an' additional   envelope  crest 

in  the  center  of the  segment;     this  fifth  sinusoid helps  keep  the  amplitude 

close  to  constant  while  also  acting  to  smooth  the  transition  between   the 

two   pairs. 

It was concluded from this  and the last subsection that HPT  is more 

sensitive   to   frequency   rather   than   amplitude   variations.      It   was   therefore 

considered   prudent   to   better   understand   how   HPT   models   signals   with 

frequency   nonstationarity.      So,   two   more   examples   of  signals   with 

nonstationary   frequencies   are   presented,   and   a   new   graphical   display   is 

introduced   to   illustrate   the   results. 
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The  first  signal   has  one  sinusoid   with   a  linearly  varying  frequency  like 

the last example.    However, a new type of study and display is introduced 

whereby  a series  of HPT  estimates  are made on  overlapping  segments. 

After the first estimate is completed, the start time for the segment is 

shifted forward - in this case by 50 percent of the segment length -  and a 

second  analysis  is performed.       After repeated analyses  the results  can be 

graphed   similar  to  a  traditional   "waterfall"  plot  to  display  variations   in 

frequency and  amplitude.     16 total  analyses were done using  200  point 

segments. 

Results  for this  first signal  are shown  starting with Figure 5.9.     The middle 

subfigure  shows  the  signal   versus  time  for reference,  with   a  wide  vertical 

bar  near  the  center indicating  the  HPT  segment length  of 200  points  (just 

over 3  minutes on this plot assuming a unit time step).    The right 

subfigure is,  in  essence,  a  version  of the FFT-based  "waterfall"  diagram. 

The  diameter  of the  circles  represent  the  amplitude  (not  energy)  of each 

Fourier  Series  fit;     open  circles  represent estimates and  the filled  circle  is 

the true  (unit)  amplitude.     Bin numbers  on  both  the left  and right 

subfigures  are arbitrarily referenced  to  a   128-point FFT;     since the HPT 

analysis used a 200 point segment, a comparable FFT length of 256 was 

chosen.     Thus,   the  frequency  resolution   for  the  right  hand   subfigure  is 

half bin numbers because the FFT length of 256 points is twice as long as 
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the  "reference"   128  points.     The  dashed  line  is  the  numerically-derived 

instantaneous    frequency. 

While the FFT ordinates do show a steady shift to higher bin numbers, it is 

not possible from the FFT plot to identify the rank or any other parameters 

of the  signal(s). 

The left subfigure in Figure 5.9 shows the HPT results.     Again, the circle 

diameters  represent  amplitude,   with   the   same  scaling   and   meaning   as  the 

right  subfigure.     Note  that  the HPT  results  are much  more revealing  than 

the FFT  results,  since HPT  correctly  identified  one  sinusoid  with   a  varying 

mean   frequency.      Subsequently,   the   amplitude  estimates   are  correct   also. 

The low  rank,   "smoothness"  of the  HPT  frequency evolution  versus  time, 

and in variance of the HPT amplitude estimates in Figure 5.9 are  all 

persuasive  indicators  that  HPT  has   accurately  fitted   the  signal 

characteristics,   especially   in   cases   where   the   characteristics   weren't   a 

priori known.     Figure 5.10a, which  is  an alternative display of the left 

subplot in Figure 5.9, does indeed show how precise the HPT estimates 

really are for this example signal.     All  of these observations make the HPT 

results  more  informative  and/or  more  believable  than  the  FFT  results.     But 

what is really  needed  is a function that would provide an  analyst with  a 

quantitative  measure of whether  a particular a continuous  set of HPT 

estimates   truly   represented   a   coherent   sinusoid   evolving   (or   not)   over 

time.    A valuable feature of HPT is that it does provide such a measure. 
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Figure   10a.     HPT-estimated Bin  Numbers and Amplitudes  versus Time for a 

Signal   with   a   Linearly-Varying   Frequency 
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Figure   10b   complements  Figure   10a  by   showing   HPT-estimated   continuous 

phases versus time.     Each circle represents the HPT estimated phase 

relative  to  the  center  of a  segment  (approximately  3  minute  length  in  this 

example),   and   the  lines   represent  the  continuous  phase  over   the   segment 

proportional   to  the  HPT  estimated  frequency  for  that  segment;     different 

lines  are  used  for  adjacent phase  estimates. 

The  overlapping phase functions plotted  in  this  Figure provide  a 

quantitative   measure   of how  coherent  the  HPT-estimated  harmonic   is 

versus   time,  as   indicated  by  the  agreement  between  adjacent  estimates 

across  their  overlap  region  (recall   that  this  example  used   a  shift between 

segments defined  as  50  percent  of the segment length,  resulting  in  a 50 

percent   overlap).      Interpreting   the  phase   continuity   is   not   always 

straightforward.     For  example,  if the  amplitude  gets  small  then  the phase 

estimates become less reliable;     also,  the phase will  not be continuous 

when   independent  components   merge.      However,   this   capability   to   inspect 

phases  over  adjacent  segments  is  offered  as  a  potentially  powerful  tool  for 

reliably   separating   signal   (coherent   phase)   from   noise   (incoherent 

phase) components.     Note also that a similar plot of FFT-estimated phase 

versus time would not be informative  since  it  is known  that biases  would 

be added  to the phase as a function of the fractional bin number as the 

frequency   shifted   between   the   integer   bin   numbers. 
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Figure  10b.     HPT-estimated Phases versus Time for a Signal  with a 

Linearly-Varying     Frequency 
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The  next  example  HPT  analysis  of a  signal  with  time-varying  parameters  is 

a more difficult signal  comprised  of two  sinusoids  with  a constant and 

oscillating   frequency   that  occasionally   come   very   close   together.      Again, 

the signal  was analyzed using HPT and FFT techniques with the 

comparable segment lengths  and 50  percent shift in  start times.     Results 

are shown in Figure 5.11.     The HPT results are more informative than  the 

FFT results in two ways:  (1) HPT shows two dominant amplitudes, indicating 

two  sinusoids,   and   (2)  both   amplitudes   are  reasonably  constant  (the  filled- 

in circle  at the top  of the  center figure  indicates  the two  true amplitudes). 

The  instantaneous  frequency  is   shown   as  the  dash-dot  line  and   clearly 

shows   how   strongly   amplitude  variations   can   affect  this   function   and 

therefore how unreliable it can be.     Figure 5.11  also shows how both 

techniques   have   difficulty   identifying   the   two   sinusoids   when   the 

frequencies  come  to  close  together  and   the  segment  length   (shown  in  the 

middle  subfigure)  becomes  only  a  small   fraction  of one  envelope  cycle. 
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Figures  5.12a and b show  the HPT estimated bin numbers,  amplitudes,  and 

phases  for  the  component  sinusoid  with   the  oscillating  frequency.     The 

estimated  amplitudes  are very  close to  the unit  amplitude except for the 

segment at the node of the envelope of the time domain  signal  where the 

two component frequencies are very close.       But most importantly, the 

phases   show   excellent   consistency   between   adjacent   segments,   indicating 

that   this   nonstationary   component   was   truly   a   coherent   harmonic 

component and  not a convenient fit from the mathematics.     It is  noted that 

equivalent  plots  for  the  bin  number,   amplitude  and  phase  of the  constant 

frequency   component   sinusoid   showed   excellent   agreement   with   the   true 

values,  but  are  omitted  here  for  brevity. 

These  examples  used  a  large  overlap  between  successive  analyzed 

segments,   whereas   standard   practice   for   spectral   ensemble   averaging   uses 

independent  segments  (except  when  windows  are  used   and  a  50  percent 

overlap  recovers  information  "lost"  by  the  tapering  at  the  ends).     This 

large overlap is not required by HPT, so why was it used?    A high degree of 

overlap   simply   allows   for   increased   continuity   when   highly 

nonstationary   signals   are   under   study,   particularly   the   frequency 

variation  and  the phase  continuity  aspects.     It  certainly  could  be 

postulated   that  such   overlap   maximizes   the  continuity   due  to   sharing  the 

same   signal   information   between   successive   analyses.     But  consider   that 

phase  plots  based  on   successive  FFTs   with   large  overlap   rarely   exhibit 

such   continuity   -   clearly  because   leakage  biases  the  estimated  phases   and 
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Figure 5.12a.     HPT-estimated Bin Numbers  and  Amplitudes  versus Time for a 

2-Component  Signal   with   a  Constant  and   an   Oscillating  Frequency 
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Figure  5.12b.     HPT-estimated  Phases  versus  Time for  a 2-Component 

Signal  with  a  Constant  and  an  Oscillating  Frequency 
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the integer frequencies  are usually  wrong.     The practice  adopted  in  most 

of the HPT numerical studies was to use a large overlap, which made it 

easier  to  visually  track  the evolution  of frequencies  in  general 

applications   (like  ocean  waves).     Regarding  the  validity  of this  practice, 

the   next   subsection   presents   one   study   demonstrating   that  high 

overlapping   (80  percent)  does  not bias  successive  phases;     certainly  a 

more formal  parametric  study could be done along  with  an  analytical  study 

of the reduction in degrees of freedom for each HPT estimate.     Before 

leaving   this   issue,   the  reader  is   reminded   that  strict   independence 

between  estimates  is  not  a  universal  goal;     for  example,  directionality 

estimates   from   an   array   assumes   and   requires   dependent   signals. 

In  summary,  the primary  objective of these last two  subsections  was  to 

demonstrate   that   HPT   can   successfully   model   nonstationary   deviations. 

The objective was not  to exhaustively quantify  the performance of HPT  to  a 

wide range  of such  signals.     This  success  was  very  important to  establish 

before   attempting   to   model   real-world   signals   where   the   signal 

characteristics   are   not   known   and   may   well   include   such   nonstationarities 

even  over short segments  as discussed  in  Chapter 2.     While the discussions 

in  these  last  two  subsections  have  shown  that  the  technique  may  not 

always   be  a  strictly  linear  operator,   they  have  shown   that  such   variations 

will  not  cause  the technique  to  diverge.     It  was  not  considered  pertinent to 

the   main   objective  of  this  ocean   wave  study  to  investigate  additional   types 

or  combinations   of analytical  nonstationary   signals   or  to   add   noise. 
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5.2.5       Representative    Analysis    of   White    Noise    Signal 

It is  always  necessary  to  qualify  and  quantify  how   any  signal  processing 

technique  performs   in  the  presence  of noise.     Band-limited,   additive  white 

noise  (either with  a  Gaussian  or uniform distribution)  is  by-far the most 

prevalent   choice   in   the   literature   for   numerically   investigating   the 

behavior  of signal  processing  techniques  for  "real  world"   signals,   and   it  is 

used in that context in this and the next subsection  as well.    Following this 

standard   practice,   the  next   subsection   will   examine   a   stochastic   signal 

defined   as   the  same  deterministic   multicomponent  signal   used   in   the  first 

subsection   summed  with  white  noise  which  has  been  low-pass  filtered   to 

approximately  the  same bandwidth   as  the  deterministic  signal.        The 

resulting  data vector is  the  linear  sum  of these  two  vectors. 

If the  Harmonic  Phase  Tracking   technique  was   a  linear  operator,   then   it 

would   be   expected   that  the   estimated   parameters   for  this   signal-plus-noise 

summed  vector  would  be  a  linear  sum  of results  from   independently 

analyzing   the   [deterministic]   multicomponent   and   the   [stochastic]   noise 

vectors.        Unfortunately,   although  the  technique  is   linear   at  each   iteration 

(using   the   total   least  squares  basis  matrix),   it  cannot  be  unequivocally 

categorized  as  a  linear operator  in  some  situations.     Certainly,  the 

Harmonic   Phase   Tracking   technique   satisfies   the   first   criterion   for   a 

linear   operator   L: 
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£{ax(t)} = a£{x(t)} 5.2 

The  technique  does  not,  however,   always  satisfy  the  second  criterion  for  a 

linear    operator: 

£{xi(t)+x2(t)} * L{xi(t)} + £{x2(t)} 5.3 

The  reason  for this  is  the  time-frequency  ambiguity,  which  must  be 

accounted   for   since   the   true  signal   characteristics   are   usually   not   known 

a priori.    As Section 5.3 will show, for two closely-spaced    sinusoids the 

results  can  show  either one or two  sinusoids,  depending  on  the  length  of 

the data  vector and  the phase of the  envelope. 

Having   concluded   that  the   technique   is   not  strictly  linear,   it  can   next be 

questioned   whether   it   is   a   linear   operator   if   the   time-frequency   ambiguity 

is eliminated.    The answer here is that, in these cases when the HPT data 

vector   is   sufficiently   long   (for   high   frequency   resolution),   the   technique 

is   linear.     The  numerical   results   in   the  first  subsection   confirm   this 

statement   and   both   of   these   linearity   criteria. 

But  because  it  is  not possible  to   always  know  the  minimum  frequency 

separation  for  the  signal  or  noise  frequencies,  it  must  be  concluded   that 

the  HPT-estimated  parameters  for  a  vector defined  as  a  signal  plus  noise  is 

not   the   linear   sum   of   independently   analyzing   the   [deterministic] 

multicomponent  and  the   [stochastic]   noise  vectors.     The  objective  of this 
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subsection   is  to  investigate  how   the  HPT  technique  handles  bandlimited 

white noise alone,  so that the information can be used  in the next 

subsection  when  the  total  vector  is  analyzed. 

A   Gaussian-distributed   white  noise  vector  was   created   using   the   intrinsic 

randn function in MATLAB 4.    This was low- and high-pass (using a cutoff 

frequency  of half the  Nyquist  frequency)  filtered.     In  the  first  noise 

study,  four  sequential  but  independent  (no  overlap)   segments   of 200  points 

were  analyzed.     Representative  bin  domain  HPT  results  for two  bin regions 

are  shown  in Figure 5.13.     The four independent analyses  are  identified  by 

four different line types and the letters a through d next to the peak of 

each   component   amplitude. 

The first  observation  is that the frequencies   are   essentially   randomly 

located,   with  little  consistency  between   the  independent  analyses.   This   is 

expected,  since there  are  no   "true"   sinusoids  in  a white  noise  signal  for  the 

technique to find.    [Note that HPT does its best to fit the signal and does 

converge to  a "best"  set of frequencies for each  segment.]       Ensemble 

averaging,   or  simple  inspection,   of frequencies   would  conclude   that  there 

were   no   deterministic   (i.e.,   repeatable)   component   frequencies   among 

these  segments   (except  for   an   occasional   apparent  consistency   at  low 

frequencies   that  would  be  removed   if  additional   segments   were   analyzed). 

Also,  note that amplitudes   among   similar  bin   numbers   are  inconsistent 

among   the   four   cases.   In   contrast,   if  sufficiently-long   independent 
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a. Representative HPT Estimates for White Noise 

10 12 14 16 18 
Bin Number; Period = 128/Bin (sec) 

b. Representative HPT Estimates for White Noise 

20 

20 22 24 26 28 
Bin Number; Period = 128/Bin (sec) 

30 

Figure 5.13     HPT Estimated Components versus Bin  Number for 

Independent  Segments   of a  White  Noise   Signal 
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segments  of the  deterministic  example  signal   in   the  first  subsection   were 

analyzed   and  compared,   the  frequencies   and   amplitudes   would  be 

essentially  identical  (see  the  next subsection).     This  is  another  key 

property  of Harmonic  Phase  Tracking  for  stochastic  signals:     ensemble 

averaging   allows for  reliable   separation   of the   deterministic   components 

from  the  noise.     The  inconsistency  among  the  estimates  shown  in  Figures 

5.13  is  independent of segment  length,  which  in  itself provides  clues  that 

the  underlying  signal   does  not  have  a  deterministic  component   at  any 

time   scale. 

A second analyses of a white noise signal was conducted to determine if a 

high   percentage   of   overlap   between   adjacent   segments   would   incorrectly 

show  phase  coherences.     As  before,  a low-  and  high-pass  filtered  white 

noise signal  was  constructed.     Segment lengths  of 200 points 

(approximately  3  minutes)  were used,  with  a shift of only 40 points 

between  successive  analyses;     in  other  words,  a  very  high  80  percent 

overlap   was  used. 

Figure  5.14  shows  one  representative  span  of bin  numbers  from  the  HPT 

estimates.     This  figure  is  quite unlike  the previous  figures  that  displayed 

sequential   bin   numbers.      There   are   no   obviously   deterministic 

components.     However,   note  that  there  are  numerous   "runs"   where  the  bin 

number   is   relatively   continuous   over   finite   time   spans,   and   the   "run 

length"   is   significant   and/or   larger   than   the   3   minute   analysis   length. 
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If this   was   a  signal   with  unknown   characteristics,   a  fundamental   question 

would  be:   do   these  runs  represent  finite  time   span   coherent  harmonics 

(e.g.,  a transient sonar signal)?     The answer is  not clear from inspection of 

Figure  5.14. 

But use  of the bin  number,  amplitude,  and  in particular the phase 

evolution   plots   provides   the   quantitative   information   necessary   to 

critically  evaluate  coherency  for  any  run  of interest.     For  example, 

consider the run with bin numbers between  15  and  15.5 and times 37 to 45 

minutes.     At first  glance this  appears  to be  a candidate harmonic  signal: 

the   run   length   is   considerably   longer   than   the   3   minute   segment   length, 

and bin  number  and  amplitude  evolutions  plotted  in  Figure  5.15a  seem 

well-behaved   and   possibly   coherent.      However,   the  phase   evolution   shown 

in  Figure  5.15b  shows  no  consistency  between  adjacent  HPT  phase 

estimates,  conclusively  proving   that  this  bin  number  series  is  not  a 

harmonic.     This  conclusion  is  evident  even  with  the high  80  percent 

overlap.     This  same inconsistency was  present for all  of the runs examined 

in Figure  5.14.     This behavior  is  quite different  from  the  consistency 

evident   from   the   [nonstationary]   deterministic   signals   analyzed   in   the 

previous    subsections. 
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Bin Number vs Time 

38        39       40       41        42        43       44        45 

0.25 
Abs(Amplitude) vs Time 

38       39 40        41        42        43       44        45 
Time (minutes) 

Figure  5.15a     HPT-estimated  Bin  Number  and  Amplitude  Evolution 

for  One  Representative  Component  in   a  White  Noise  Signal 
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Figure 5.15b     HPT-estimated  Phase Evolution for  One 

Representative  Component   in   a  White   Noise   Signal 
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5.2.6        Representative    Analysis    of    Multiharmonic    Signal    with 

Additive    White    Noise 

This subsection  investigates  the behavior of HPT for the  standard  case of a 

constant  parameter  deterministic  signal  plus  noise.     A  total   signal   was 

defined  by   summing  the  same  deterministic   19-component  signal  used  in 

Subsection  5.2.2 with  a  [bandlimited]  white noise vector.     The root-mean- 

square   amplitudes   were   approximately   2.5   for  the  multicomponent   signal 

and  1.5  for the white noise.    Five independent segments with the same 360 

point length  as used in Figures  5.1   through  5.7  were  analyzed  and  are 

identified  as  cases  a  though  e. 

One representative bin  span of all  five HPT  estimates  is  shown  in  Figure 

5.16.       The  following  qualitative  conclusions  can be  made regarding  the 

performance   of  the   Harmonic   Phase   Tracking   technique   for   this 

combined    signal: 

•     the   technique   successfully   identified   only   the   true   deterministic 

frequencies,   as   measured   by   the   consistency   among   the   estimates 

at those  [known]  frequencies.     It is  seen  that the noise does 

introduce   a  small  bias   in   some  of the  frequency  estimates   which 

appears   proportional   to   the   correlation   (bin   spacing)   with 
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a. HPT Estimates for Multiharmonic Signal with Noise 

5 6 7 8 9 10        11 
b. HPT Estimates for Multiharmonic Signal with Noise 

"11 12 13 14 15 16 17 18 
c. HPT Estimates for Multiharmonic Signal with Noise 

18 19 20 21 22 23 24 
Bin Number; Period = 128/Bin (sec) 

25 

Figure 5.16    HPT Estimated Components versus Bin Number for 

Independent   Segments   of  Multiharmonic   Signal   with   White   Noise 

169 



neighboring   components;      this   estimated   frequency   can   be 

thought  of as  a  "local   instantaneous  frequency"   comprised  of a 

local   true  component  plus  a  local  noise  component  weighted  by 

their   amplitudes   squared. 

on   the  other  hand,   the  technique  produced   frequency   estimates 

with   essentially  no   consistency   at  most  other  frequencies, 

strongly   suggesting   that   no   deterministic   components   were 

present  there.     However,  for  this  choice  of segment  length  and 

the  limited   number  of samples,   there  are  four  bins   where   there  is 

apparent   consistency   in   frequency,   with   an   appreciable 

amplitude,   without   a   corresponding   deterministic   component   -   at 

bins 3.5, (perhaps) 7.9,  18.0 and 21.6.    Chapter 8 addresses how to 

best   handle   and   possibly   eliminate   occasional   spurious 

components  like  these  (one  immediate  remedy  is  to   increase  the 

number   of  analyzed   segments,   but   eventually   stationarity   issues 

become    important). 

both   of these  first  two   conclusions   show   that  Harmonic  Phase 

Tracking   reasonably   estimated   the   rank   of  the   deterministic   part 

of the signal,  i.e., it did not miss any true components and  may 

only   incorrectly   identify   a   few   noise   components. 
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• while five cases  was not sufficient to draw firm conclusions,  it is 

evident that  an  expected  value  at  each  of the  deterministic 

component  frequencies   would   yield   a  reasonable   estimate  for   the 

component    amplitudes. 

In  practice,  more  analyses  would  be  done,   and  the  evolutionary  phase 

figures  would  be  used  to  identify  the  coherent,  or  assumed  deterministic, 

frequencies  in  the  signal.     From  that best-fit vector,  a total  least  squares 

analysis   will   yield   the   component   amplitudes   and   phases   for   any   segment 

of interest.     This follow-on  analysis then  allows  for any number  of studies 

regarding  the  signal.     Some  of these  applications  are briefly  listed  below 

but will  be  addressed  in  more detail  in  later chapters: 

• identification   of  the  rank   of  the   deterministic   signal 

decomposition  of  the  given   signal   into  a  deterministic   and 

stochastic  part,  which  can  then  be  inspected  in  the  time  and 

frequency   domains   for  their  behavior  (for  example,   is   the  noise 

white   or   is   it   concentrated   at  particular   frequency   bands?). 

• if multiple signals are available from an array, then the relative 

phases at particular frequencies can be used to estimate incident 

directions  for  those  components  (this  is  addressed  in  Chapter  7). 

• component frequencies need not be constant in time; inspection 

of   a   time-sequence   of   Harmonic   Phase   Tracking   frequency 
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vectors   would   also   allow   for   identification   of   slowly-varying 

trends  such  as  a  shifting  of a  system's  natural  frequency  if the 

system   properties   are   varying   in   time. 

• inspection  of time-sequences  can  also  detect  the  arrival  of a 

"new"  component,  caused  for example by the arrival  of a reflected 

wave   or  a   transient   sonar  return. 

• the   component   frequencies   available   from   Harmonic   Phase 

Tracking  also  are  a natural  choice  for predicting  future data 

points.     When   used  in  conjunction  with  the  ability  to   separate  the 

deterministic   and   stochastic   components,   this   application   holds 

great promise.     For example, from  studies of actual  ocean  wave 

data  reported   in   Chapters  7   and   8,   good   correlations  between  the 

measured   and   fitted   signals   are  routinely  available  for  four  and 

sometimes more cycles outside of the analysis band.    This is well 

beyond   the   capabilities   of  any   other   known   technique. 

In   summary,   these   example   post-processing   applications   take   advantage   of 

trends   in   frequencies,   amplitudes,   and   phases   available   from   this 

technique   to   learn   more   about   the   signal   and/or   to   confirm   assumptions 

used  in  any   such   analyses.     Undoubtedly,  many  more  applications   are 

possible. 
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These analyses required between 35  to 80 iterations (approximately  10 to 20 

minutes) for each of the 360 point segments and the 55  to 60 components 

typically  estimated  from  the  total   signal  least  squares  fits. 

5.3      Numerical   Aspects of   Harmonic   Phase—Tracking 

Two  representative  studies  are  presented  in  this  section:     the  effect  of 

segment   length   (Section   5.3.1),   and   dependence   on   the  initial   frequency 

vector estimate (Section 5.3.2).       These are the two most important studies to 

demonstrate that HPT  estimates  are quite robust  and  stable.     Many other 

numerical  studies,  such  as  the  affect of changes  to  the  minimum 

resolvable   bin   spacing   and   various   criterion   thresholds,   were   necessarily 

conducted  in  the  course of developing  the MATLAB  algorithms but  are not 

reported   here   since   they  primarily   affect  issues   such   as   efficiency   and 

resolution.     The  effect of noise on  HPT-estimated  parameters  was  reviewed 

in  Section 5.2.4. 

5.3.1       Data   Segment   Length   and   Bin   Resolution 

The principle objective of the  analyses  in  Section  5.2 was  to  demonstrate 

that Harmonic  Phase  Tracking  has  the  capability  to  model  the  full  range of 

signal   characteristics  expected  in  ocean  waves.        Generally  speaking,  HPT 

was  shown  to  be a  valuable signal  processing  tool  that yields  signal 
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information   not   available   from   Fourier   Transform   and   spectral 

techniques. 

Since  the   signal   properties   were  known  a  priori,     the segment lengths for 

the  HPT   analyses   were  purposely   optimized   to   minimize  numerical 

complications.     This  section  extends  that capability by  focusing  strictly  on 

the  numerical  stability  and  uniqueness  of the HPT  estimates. 

The only real decision to make in using HPT is to select a length of segment 

to   analyze   (other  decisions   like  filtering,   sampling   rate,   etc.   are   necessary 

but   are   independent   of  the   analysis   technique).      In   traditional   spectral 

analysis   this   requires   a   compromise   between   maximizing   the   length   for 

minimum  bin   resolution   and  minimizing   the  length  to:   (1)   reduce  the 

uncertainty   by   maximizing   the   number   of   stochastic   averages,   and   (2) 

minimize any  possible  nonstationarity  effects.       For some  signals  it  may be 

possible  that  any  length  of segment  will  return  biased  results.     For 

example, this could be true for ocean waves for two reasons.    First, as stated 

in Chapter 2, it may be impossible to avoid  component averaging  at low 

frequencies   and   nonstationarity   at   high   frequencies   because   of   the   large 

bandwidth  of the  signal.     Second,  it is possible for the spectrum to be 

continuous at all  time scales;    if it is, then it is necessary to accept some 

degree  of  frequency   averaging   and   not  expect   to   resolve  discrete, 

physically-realizable   harmonic   components   at   all   frequencies   (which   is 

exactly  the  reason  why  the  concept  of the  spectrum  holds  so  much  appeal). 
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To  investigate  the  effect  of  segment  length  versus  bin   averaging,   a  three 

component   signal   was  defined,   consisting   of two  closely-spaced   unit 

amplitude  sinusoids  and one isolated  smaller amplitude  sinusoid.     All 

analyses used a reference FFT length of 64, which results in a minimum 

true bin  resolution  (i.e.,  difference in  the number of cycles  in  the HPT 

segment)  of 0.126  between  the first two harmonics.     Resolution  of this  bin 

spacing by HPT requires a segment length of at least 255 points as defined 

by Equation C.5.     Two different segment lengths were used;     the first used 

350 points to avoid the ambiguity, while the second used 200 to insure that 

it did  occur.     In  addition,  three different local  sections  of the signal  were 

analyzed;     the first was centered over a crest of the envelope,  the second 

was  centered  between  the  crest  and  next  node,  and  the third  was  centered 

across the envelope node.     These were chosen to  agree with the cases 

previously  discussed  in  Subsection  5.2.3.     Note that relative to  the beating 

envelope  period   of   1024  points,  even  the  longer  350  point  section 

corresponded  to  approximately   123  degrees or only  34 percent of a cycle. 

Thus,  even  this  long  segment  is  not particularly  long  relative to  the 

beating   behavior   of  the   total   signal. 

Results  are summarized in Table 5.3,  identified  as  "crest",  "slope",  and 

"node"   for  the  three  local   sections.     Note  the  following   characteristics   of 

the  longer   350-point   analyses   (upper  half  of  table): 
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• the   estimates   are   remarkably   accurate   in   identifying   the   signal 

rank and parameters  (usually 2  and  often  3  significant digits)  for 

all   three  local   sections.     The  frequency  estimates   are  particularly 

accurate. 

• The  "node"  analysis does show  a very small 3  percent error in the 

amplitude estimates.     The explanation  for this was  discussed  in 

Section  5.2.5  regarding  the  total  least squares estimator.     Note that 

this   "node"   segment only  includes   ±61  degrees of the envelope, so 

for this case HPT does not have access to the amplitude 

information  contained  at the crest.     3  percent is  still  considered  a 

generally    acceptable    error. 

• Note  that  the  two  beating  amplitudes  are  always  identically  equal, 

which   is   consistent   with   the   characteristics   of  this   envelope   per 

the  discussion  in  Appendix   A. 

• These  analyses  required  between   14  and   19   iterations. 

The 200-point  analyses  show  errors  as  expected.     Note that this  shorter 

segment  length  corresponds   to   a  very  short   ±35  degrees  of the  beating 

envelope.     Observations  from  Table 5.3  and  Subsection  5.2.3   include: 

• HPT  does   not  consider  the  small   amplitude  variations  near  the 

crest to be significant so instead  a one best-fit sinusoid  was fitted. 

Note  that  the  frequency  is  correctly  estimated  as  the  mean 
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frequency  for  these  two   equal   amplitude  true  sinusoids   (f in 

Equation  A2.a).     The  estimated  amplitude for the third  sinusoid 

shows a small bias. 

• the   "slope"   analysis  returns   excellent   estimates   of  all   parameters. 

[Note:   the  presently-implemented  HPT   algorithms   do   allow   for 

local   decreases  in  the  minimum  bin  resolution  if the  iteration  is 

well-behaved,   which   explains   how   the   two   closely-spaced 

sinusoids   were   accurately   resolved   even   though   the   segment 

length   was   apparently   too   short.] 

• as  with  the  longer estimate,  the  "node"  analysis  does  show  an 

error  in  the  amplitudes,  in  this  case   12 percent.     But they  are 

again  correctly equal.     And  be reminded that this is  a very  short 

segment  of the  time  series,   so  this  error  is  still   quite  reasonable. 

As   with   the   longer   segment   results,   the   frequencies   are 

reasonably   accurate   for   all   cases. 

The  tabular  summary  presented   in  Table  5.3   has  been   informative.     But 

further  insight  can  be   obtained  if  the  modified  waterfall   (i.e., 

evolutionary)   figures  from  the  last  section   are  utilized  here.     Three 

examples   are   discussed. 
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The first example uses two  constant parameter sinusoids  at bins  8.765  and 

9.00.    This requires a minimum segment length of 326 points for HPT to 

resolve.     Instead,  200 point segments were used to investigate the behavior 

of the HPT estimates when the signal is "quasi-continuous";    a FFT length 

of 256 points was selected as comparable. The modified waterfall diagram 

is shown in Figure 5.17, where a 128 point FFT was retained as the 

reference FFT  length  for the graphical  displays  (thus,  a 256  point FFT 

appears  to have  a resolution  of one half bin). 

Start  by   examining   the  FFT   component  evolution   in   the  right   subfigure. 

These FFT  frequencies  are,  of course,  constant.     The  predominant 

amplitude  varies   in  phase  with   the  amplitude  of the  signal   envelope 

(middle  subfigure),  but the estimate  is  poor  in  the  vicinity  of the  envelope 

nodes   where   the  phase  discontinuity   discussed   in   Appendix   A   disrupts   the 

instantaneous   frequency.      While   it   is   conceivable   that   an   experienced 

analyst could conclude that the beating FFT ordinates  at bin 9  and the 

smaller  ordinates   at  bin   8.5   indicate  two  underlying   sinusoids   (indicated 

by the dashed  lines  and  the fill-in  circles  at the top), there is little more 

that  can  be  deduced   from  this   information. 

Contrast that to  inspection  of the  HPT  information  displayed  in  the  left 

subfigure.     As with the FFT ordinates, the HPT amplitude estimates show  a 

beating  behavior  that follows  the  signal  envelope.     But note  that the raw 

HPT   frequency   estimates   very   closely   track   the   instantaneous   frequency 
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indicated by the dashed line.    This new HPT frequency information is, of 

course,   not  definitive  in   terms   of  identifying   the  two   underlying 

sinusoidal   components.     However,   it  does  recover  the   instantaneous 

frequency,   and   that   provides   useful   additional   information   about   the 

signal  not available from a FFT  analysis. 

The next example signal uses three instead of two closely-spaced 

harmonics  at bin  numbers  14.765,   15.000,  and  15.235  (same separation  as 

the previous example).    The time series, and HPT and FFT estimates, are 

shown  in  Figure  5.18. 

The FFT estimates show large amplitudes only where the instantaneous 

frequency is relatively constant. It would be very difficult to conclude 

that   there   were   three   sinusoids   within   this   bin   region. 

The HPT estimates  are more consistent in  amplitude for all  segments.     The 

HPT   best-estimated   frequency   very   accurately   tracks   the   instantaneous 

frequency,   even   through   the   [partial]   phase  discontinuities.     While   it   may 

not  provide   enough   definitive   information   to   identify   and   recover   the 

three  harmonics,  the  set of HPT  estimates  is  clearly  stable,  with  a behavior 

that   can   be   physically   correlated   with   the   instantaneous   frequency. 
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One  final   example  of three  closely-spaced  harmonics   is  presented  in 

Figure 5.19  (same bin  spacing  and  segment length  as  previous  two 

examples).     The  motivation  for presenting  this  example  can  be  found  from 

inspection of the HPT estimates  in the left subfigure.     Examine first the 

instantaneous   frequency  (IF)   and   compare  it  to  the  signal  envelope  in  the 

center  subfigure.     The time  intervals  for the IF  discontinuities  are  not 

equal;     one  interval   is  roughly  50  percent  longer  than  the other because 

of the envelope shape.     For this  signal  the  estimated HPT  frequency 

consistently   has   difficulty   converging   within   the   very   nonstationary 

shorter  interval.      As  a  result,   the  sequence  of frequency   appears   coherent 

only   over   the   longer   interval   where   it   continually   decreases   (downshifts) 

over  time,  disappears  or  at least  becomes  unreliable,  then  reappears  at  a 

higher  frequency  5  minutes  later  to  begin  the  cycle again.     A  very  long 

time  series   would  be  required   to   observe  that  this   apparently  nonstation- 

ary  downshifting   was   actually  one  part  of  a  longer  cycle  representing   the 

interactions   of   three   stationary   harmonics. 

Recall   that  the   IF  corresponding   to   two   stationary  sinusoids   is   relatively 

constant,   except  for  very  abrupt  delta  functions  at  the  envelope  nodes. 

With three harmonics as in this example, the IF as shown in Figure 5.19 is 

a  complicated   function  which   is   in   effect  the  sum  of three  interacting 

pairs  of constant IFs  with  delta functions.     This  "sawtooth"  behavior of 

repeated   apparent   downshifts   is   interesting   because   it   impacts   the   ocean 

wave   interpretations   in   Chapter   7. 
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What  are  some  of the  major  conclusions  from  this  subsection? 

1. All  Harmonic Phase Tracking  parameter estimates  are accurate 

when   the  resolution   (proportional   to   the   segment   length)   is 

consistent  with   the   minimum   bin   spacing   of  discrete   harmonic 

components. 

2. HPT estimates are stable for all signals, and in addition are 

reasonably  accurate  for  all  examined  signals  except  for  short 

segments   across   envelope   nodes. 

3. Typically, the HPT frequency estimates are reasonably close to the 

instantaneous   frequency   and   are   therefore   related   to   physical 

signal    characteristics. 

4. The tendency of HPT to estimate the instantaneous frequency for 

closely-spaced   components   is   generally  useful   but   can   result   in 

patterns   that   are   difficult   or   perhaps   misleading   to   interpret. 

5. HPT  estimates  can  reveal  additional  information  about  the  signal 

that is not available from FFT analyses,  such as the rank. 
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5.3.2       Investigation    of   Dependence   of   HPT   Estimates   on    Initial 

Frequency      Vector 

The  next  study  regarding   the  numerical  robustness   and   stability   of  the 

technique  varied   the  rank  and   values   of the  initial   frequency  vector  to 

determine  what  affect  that may have  on  the final  best-fit solution.     The 

rank-19  multicomponent of Subsection  5.2.2  summarized in Table 5.1  was 

used as the basic signal.    The same segment length was used.    For 

reference,   the  previous   HPT  estimate  from   that  Subsection   is   summarized 

in Table 5.2. 

The   initial   frequency   vector   for   the   iterations   in   that   reference   solution 

was found  from the real  transform matrix  R  as discussed in Chapter 4.    For 

this  study,  that  initial  vector was  modified  as  follows: 

1. The estimated rank was reduced from  19 to  15 by arbitrarily 

eliminating components at bins  9.23,   10.12,   11.75,  and  12.21   (rows 

6, 8, 10, and 12 in both Tables). 

2. The  remaining  bin  numbers  were  modified  by  adding  a  vector  of 

zero-mean  random  numbers  bounded  between  -0.25   and  0.25;     the 

rms  value of this random  vector  was 0.13. 

The   solution   using   this   reduced   and   modified   initial   frequency   vector   is 

summarized  in  Table 5.4. 
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Comp- 

onent 
Frequency Amplitude Phase (Deg) 

Estimated True Estimated True Estimated True 

1 4.6865 4.6875 1.003 1.00 -42.81 -43.41 

2 5.1900 5.1875 0.998 1.00 130.04 129.56 

3 5.5850 5.5882 0.497 0.50 -72.52 -73.29 

4 8.2528 8.2500 0.443 0.50 -161.73 -161.02 

5 8.8798 8.8750 1.007 1.00 98.34 100.19 

6 . * 9.2353 - 0.50 - 0 

7 9.9008 9.8750 1.251 1.00 137.99 131.13 

8 10.0792* 10.1250 0.761 0.50 -38.83 -52.38 

9 10.7661 10.7647 1.060 1.00 43.43 44.50 

10 11.7488* 11.7500 1.015 1.00 -121.54 -120.23 

11 12.1109 12.1250 0.487 0.50 -34.77 -35.51 

12 12.4176* 12.4118 0.985 1.00 -178.32 -179.83 

13 12.7534 12.7500 0.995 1.00 -88.84 -89.30 

14 13.1828 13.1875 0.495 0.50 63.20 62.05 

15 13.7064 13.7059 0.501 0.50 -59.31 -60.39 

16 16.4378 16.4375 0.992 1.00 -118.27 -118.65 

17 21.6874 21.6875 0.497 0.50 32.56 32.52 

18 22.0629 22.0625 1.001 1.00 117.02 117.25 

19 22.7652 22.7647 0.997 1.00 -124.23 -124.25 

*   denote   components   that   were   removed   from   the  initial   frequency 

vector  prior   to   the   iterations 

Table  5.4     Estimated  Parameters  for  Multicomponent  Signal  Using 

Modified   Initial   Frequency   Vector 
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Note first  that the final  HPT-estimated  solution  does  not include  the 

component at bin 9.23.    Evidently, the iteration process was  able to bias the 

amplitude   and   frequency   of  neighboring   components   enough   so   that   the 

error  in  this  bin  region  did  not  become  large  enough  to  trigger  insertion 

of new  components.     For example,  the amplitudes at the next two highest 

bins were  increased by  25  and  52 percent,  respectively.     The technique  did, 

however,  insert  components  at  the  other  two  removed  bin   numbers   where 

the  missing   amplitudes  were  larger  and   the  error  term  did   trigger 

insertions.     This  leads  to  the  conclusion  that  this  missing  component  could 

be  detected  simply  by  adjusting  the  insertion  thresholds.     Recall  that  the 

threshold   values   used   in   the   development   of  this   technique   were 

purposely   chosen   as   a   compromise   between   accuracy   and   efficiency;      in 

these  cases,   the   15   iterations   required   for  the   reference   analysis   was 

increased  to  35  for  this  more  difficult case.     If increased  accuracy  was 

required   for   a   given   situation,   these   insertion   thresholds   could   be 

tightened  at the cost of increased  computational  costs.     That was  not studied 

here. 

Otherwise,   the   solution   found   using   this   modified   initial   frequency   vector 

is   considered   good   with   respect   to  bin   numbers,   amplitudes   and   phases. 

Many other studies have been performed which have not been reported 

here. These experiences demonstrated that HPT dependably arrives at a 

consistently   estimate   for   virtually   all   signals. 
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5.4        Summary    of    Harmonic    Phase    Tracking    Validation 

This  Chapter  has  presented  many  example  studies  to  demonstrate  that 

Harmonic Phase Tracking  is  capable of modeling  a diverse set of real- 

world  signals.     In  the process,  many  strengths  and  some  weaknesses  of the 

technique  were  discussed.     Sometimes  these  characteristics  applied  to  all 

signals,  while  other  times  they  applied  to  only  particular  types  of signals. 

This   section   is  presented   to  organize  the  conclusions   and   observations 

made  throughout   this   Chapter   to   help   minimize   any  possible  confusion. 

Key   findings   in   each   numbered   paragraph   are   underlined. 

1. The discussion  in  the last subsection  clearly  illustrates  the point that 

although   this   technique   is   adaptive   and   iterative,   the   converged 

estimates   are   inherently   asymptotically   accurate.      Better   or  worse 

accuracy   is   available   by   modifying   the   convergence   thresholds. 

Therefore,  the  primary  focus  of this  Chapter has  been  on  the 

qualitative  performance  of the  technique.     Since  the  selected  threshold 

values   are   compromises   between   accuracy   and   efficiency,   the 

accuracies  reported  here  could  be  considered  as  minimum    accuracies 

which   could  be   improved. 

2. When   applied   to   discrete,   deterministic,   constant  parameters 

multiharmonic   signals,   the   Harmonic   Phase   Tracking   technique 

estimates   the   correct   rank   and   accurate   parameters   whenever   the 
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segment  length   is   long  enough   to   provide  adequate  bin   resolution. 

Thus,  it  is  unbiased  in  these  applications. 

3. The technique is insensitive   to   linear   variations   in   sinusoidal   amplitude 

regardless  of the  magnitude.     This  is  an  interesting  complement  to  how 

Fourier Series  models this type of signal.     However,  it interprets  a 

single  sinusoid  with   nonlinear  amplitude variations  as  a pair of 

beating   sinusoids   with   an   envelope  period  much   longer   than   the 

segment   length.      Both   of   these   apparently   different   interpretations 

can be traced  to  the  time-frequency  ambiguity  issue,  so  it  can  be 

argued   that  neither  are  "wrong"   when  the  segment  is  too   short. 

4. The  technique can  successfully  model   a  sinusoidal  component with  a 

varying    frequency.      Generally,   the   best-fit  frequency   estimate   to 

several   closely-spaced   harmonics   follows   the   instantaneous    frequency. 

While this has value because it is related to the signal itself, it can 

introduce    interpretation    problems. 

5. Even when the segment   is   too   short  such  that bin  averaging  of 

components   occurs,   the   technique   models   multiharmonic   signals 

reasonably   accurately.       However,   the   averaging   characteristics   vary 

with  the  phase  of the  envelope  of  the  components  within   any  given 

bin.     If a time-sequence of segments  is  analyzed,  inspection  of the 

varying   amplitude   and   rank   can   provide   useful   information   that   the 

segment   should   be   lengthened   and   the   analysis   repeated. 
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6. HPT  is  capable of robustly  modeling  closely-spaced  discrete harmonics 

with  a  finite  set of discrete harmonics.     Since  such closely-spaced 

components  approximate  a  signal   with   a  continuous   spectrum,   this 

establishes that HPT is applicable to  ocean waves if this  applies. 

7. The Harmonic Phase Tracking  technique  is  equally  applicable  to 

stochastic   signals  if ensemble averaging is used.     Each realization  (i.e., 

segment)   is   modeled   as   a   deterministic,   multiharmonic   signal,   and 

inspection  of the results  for  a time  sequence of realizations  allows  for 

identification   of   deterministic   (invariant   frequency   vs.   realization) 

components   summed   with   a   stochastic   noise   component. 

8. The phase   evolution   plot  provides  a  quantitative  measure  of coherence of 

any signal component in time. This is an important new capability not 

available with a FFT for interpreting whether a suspected component is 

deterministic. 

9. There  are  no  restrictions  on  the spectral  or distribution  properties  of the 

noise   component. 

10. This is not   a  real-time   algorithm  as  implemented.     Analysis  times  are 

typically  15 to 30 minutes for uncompiled MATLAB4 code on a Sun 

SPARC 10   computer. 
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All  of these  features  of Harmonic Phase Tracking  were  important  to 

establish  prior  to   analyzing  real  ocean  wave  signals  because  they:   (1)   are 

stochastic,   (2)  have   a  relatively   large  number  of components  with   an 

unknown   (possibly   infinitesimal)   minimum   frequency   spacing,   (3)   have 

slowly-varying   amplitude   variations,   (4)   may   have   frequency   variations 

and  variable  rank,  (5)  and  may  not have white  noise characteristics.     This 

Chapter  showed  that  HPT   models   these  signal   characteristics  and  that 

sequential   inspection   of  the   estimates   (particularly   the  phase)   provides   a 

useful   "goodness-of-fit"   measure.      These   results   provide   high   confidence 

that Harmonic Phase Tracking  will  be a robust  tool  for the  analysis  of 

laboratory  and  real  ocean  waves  in  Chapters  6  and  7. 
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CHAPTER 6 

ILLUSTRATION OF HARMONIC PHASE TRACKING  USING PHYSICAL 

SIGNALS WITH KNOWN  CHARACTERISTICS 

6.1       Chapter   Overview 

Chapter   5   used   analytically-defined   signals   to   numerically   demonstrate 

the  robustness  and  performance  of Harmonic  Phase  Tracking   (HPT).     This 

chapter complements those studies by using HPT to  analyze one set of full 

scale   tidal   data   and   three   sets   of  laboratory   scale  mechanically-generated 

forced  waves.     In  all  four cases  the characteristics  of the signals are 

(approximately)   known   a priori, so these actual physical signals serve as a 

valuable   "bridge"   between   the   mathematical   exactness   of   the   analytical 

harmonic   waves   in   the   last  chapter  and   the  uncertainty   of  the  ocean 

waves  analyzed  in  the next chapter.       Non-essential  details  are omitted. 

The primary  Chapter objectives  are  to  demonstrate:     (1)  the first 

performance of HPT  for real-world signals,  and (2)  examples of the type of 

new   engineering   information   regarding   a   signal   available   from   HPT. 
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fuL lidaJ R££ü£d Analysis 

Before  presenting   a  numerical   example,   it  is   instructive  to   compare 

Harmonic   Phase   Tracking   with   harmonic   analysis,   which   is   the   technique 

of choice used  to  analyze  tidal  records.     The comparison  is  straightforward. 

Both   use   a   finite   set   of  constant-parameter  harmonics   with   arbitrary 

frequencies to  model  the signal.     But harmonic  analysis requires a  priori 

definition   of  the  rank   and   the   frequencies   before  finding   the  best-fit 

component   amplitudes   and   phases,   whereas   all   of  that   information   is 

inherently  estimated   with  HPT.     Thus,   HPT  eliminates  the  potential   errors 

associated  with  the  use  of harmonic  analysis;     viewed  this  way,  perhaps  an 

alternative   name   for   the   "Harmonic   Phase   Tracking"   technique   could   be 

"total   harmonic   analysis". 

Near   shore   tides   are   a   very   complex   phenomenon   involving   astronomical 

forces   and   local   bathymetry.     While  the  periods  of the  major  astronomical 

harmonics  can  be  calculated  with   great  precision,  for  most  sites  this 

information   is   not   sufficient  to   allow   for   analytical   estimation  of tides 

because of local  basin dynamics  (Apel,   1987  and Defant,   1961).     Instead, 

local   measurements   and   the   astronomical   periods   are   used   with   harmonic 

analysis  to  fit the  tidal  component  amplitudes  and phases  for  a given  site, 

which, depending  on  the  amount of data  available, may only  be valid  for a 

finite  time  interval.     As  a  result,   the coefficients  and  phases  are  generally 
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not available for most sites, and they could not be identified for this first 

numerical  example.     In  spite of this limitation,  this example  still  has  value 

because  it demonstrates  the  accuracy  of the HPT-estimated  periods  versus 

the   known   astronomical   periods. 

A tidal sequence for the summer of 1996 at Barlows Landing Beach on Cape 

Cod Massachusetts was selected.    Figure 6.1 shows the 62 day record (500 

data points at 3  hour sampling interval) used for the HPT  segment length. 

The results  are shown  in Table 6.1: 

Astronomical 

Tidal Mode 
Symbol 

Exact 

Period 

(hours) 

HPT Period 

(hours) 

Percent 

Difference 

Principal    lunar Ol 25.8190 25.8230 0.0155 

Declination 

luni-solar K2 23.9350 23.9547 0.0824 

[HPT  estimate] N/A 12.8840 undefined 

Elliptical    lunar N2 12.6580 12.6528 0.0409 

Principal    lunar M2 12.4210 12.4208 0.0017 

Principal    solar S2 12.0000 12.0010 0.0085 

[HPT  estimate] N/A 6.2097 undefined 

Table 6.1.    Comparison of Astronomical and HPT-Estimated Tidal 

Periods  for Figure  6.1 
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Two  conclusions  are  apparent  from  inspection  of the  Table: 

1. HPT-estimated periods  closely match the known  astronomical 

periods,   and 

2. HPT detected two additional components. Both of these components 

have small amplitudes of 0.15 and 0.24 ft, respectively.    By way of 

comparison,   the  amplitudes  for  the  M2   Principal   lunar   amplitude 

and  Oj Principal  lunar components  are  2.05  and  0.15  ft,  respect- 

ively.    The source of these additional terms is unknown, but it is 

interesting   that  the  shortest  additional   period  is   exactly   the  second 

super harmonic  of the  M2   mode,   while  the  longer  additional   period 

is essentially equal to the second super harmonic of the Oj   mode 

(and perhaps  exactly  equal  if a longer  data record  was  used). 

Note that the 3- to 4-digit accuracy evident in the HPT periods is not 

readily available from a FFT analysis;    even if an extremely long data 

segment   was   available,   there   are   longer   astronomical   influences   that 

make   some   component   amplitudes   nonstationary   and   therefore   introduce 

bias in the FFT amplitude estimates. 

£xl  Rank    4    Laboratory    Wave    Signal 

This is a seemingly simple example.    A record was obtained from the U. S. 

Naval  Academy  Seakeeping  tank of a wave  signal  made using  only four 

components generated at bins 5, 7, 9, and  11 relative to the 256-point FFT 
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used to drive the wavemaker,  corresponding to periods of 0.45,  0.56,  0.71, 

and   1.0 seconds.     After a suitable start-up interval, a 40 second duration of 

waves was recorded using a wave staff.    The tank dimensions are:  380 ft 

length, 26 ft width, and  16 ft depth. 

The  HPT  analysis  began  by high-pass  filtering  the  data  and  subsequently 

decimating  by  5.     The  following  analysis  parameters  were used: 

number of data points  in signal: 205 

number  of points  per  HPT  analysis: 60 

comparable  FFT   length   for   figures: 32 

number   of  points   per   shift: 15 

starting   data   point: 20 

This defined a 75 percent overlap, with a total of 8 analyses.    The wave 

signal along with  the HPT and FFT results are shown in Figures 6.2a and 

6.2b.    The format of Figure 6.2a follows Figure 5.9.    The decimation by 5 and 

the change from a 256 point reference FFT used for the wavemaker to a 32 

point reference FFT for the HPT analysis results in  a new  "exact" bin 

number vector of {5 7 9 ll}*(32*5/256) = {3.125 4.375 5.625 6.875}. 

Figure 6.2b details the HPT and FFT results.    The HPT results clearly show 

that the signal  has  a rank of 4,  with relatively  constant amplitudes.     Most 

importantly,   the  four  HPT  bin   numbers   match   the  exact  bin   numbers  very 

closely.     The FFT estimates imply two dominant components, but their exact 

frequencies   and   any   other   conclusions   are   not   possible. 
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HPT Component Evolution vs Time 
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Figure 6.2b.     HPT- and FFT-estimated components for Rank 4 

Wave   Signal 
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Note that a dashed line has been added to each figure.    Inspection of the 

HPT   components   in  the  upper  figure  shows   a  clear  discontinuity  pattern 

for three of the components that seems to occur at a time that is linearly 

proportional   to  the  bin  number   (frequency).     The  dashed  line  has  been 

added   to   approximately  mark  this  demarcation. 

This evidence from the HPT analysis does in fact correspond to a physical 

phenomenon - in this case, energy flux.    This is easily shown  as follows: 

1. The four wave periods (T) are 1.0, 0.71, 0.56, and 0.45 seconds. 

Since the water depth is   16 ft and the maximum  wavelength  is 

X= 5.12(1)2 = 5.12 ft, these correspond to deep water waves. 

2. The Deepwater group velocity  Cg deep  is given by (Dean and 

Dalrymple,   1984): 

I      _ wave celerity _ A,(T) _ 5.12T2 _ 2.56 
g|deep- 2 ~   2T   ~     2T     ~    f 

6.1a,b 
_ 2.56*3.125^ 8 

B        ~B 

where B  is  the Bin  number. 

3. Since any velocity is distance over time,  Cg deep is also given by: 

Ax     100 ft 
C^=-AT = -AT 6-2 

where  100 ft is the distance between the wave gage and  the 

wave  generator for  these U.S.N.A.  tests. 
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4. The expected slope corresponding to Figure 200 is found by 

combining  Equations  6.1   and  6.2: 

At 
analytical   slope   (sec/Bin) = — = 12.5 6.3a 

6 

5. The empirical  slope from Figure 6.2b  is found from inspection using 

the  [approximate]  (4,1)  and  (7,1.6)  end points of the line: 

At     (1.6-1X60) _ 
empirical   slope   (sec/Bin)= —= — = 12 6.Jb 

The  consistency  between  Equations   6.3a  and   6.3b   strongly  suggests  that 

this   discontinuity   measures   the  fact   that  the   full   energy   at   each 

frequency   arrives   at   progressively   later   times   due   to   the   dispersive   nature 

of  water  waves.     This   phenomenon   repeats   ad   infinitum   during   any   test, 

making   laboratory   wave   data   "piece   wise   stationary"   between   the   arrival 

times.     This  introduces bias  into  laboratory data that is difficult to 

eliminate   (for   multiharmonic   waves)   and   difficult   to   detect  using   spectral 

analysis,   even  in  cases  like  this  where  the  excitation  is  purposely  defined 

at   Fourier   integer  bins.      In   practice,   analytical   expressions   (Equations   6.1 

and  6.2)  and  the  experience  of the tank  operators  are used  to  subjectively 

define  the  time  interval  for the  "most  stationary"   data window.     Thus,  the 

individual   component  wave  information   from  HPT  in  Figure   6.2b   is  not 

presently   available   and   could   be   useful   for   laboratory   studies. 

Continuing  with  this  examination  of the  data  in  Figure  6.2b,  Figure  6.3 

illustrates   the   HPT   parameters   for   the  highest   frequency   component   wave. 
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Bin Number vs Time 
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Abs(HPT Amplitude) vs Time 
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Figure 6.3.     Example HPT-estimated Parameters for the Rank 4 

Wave   Signal 
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The  frequency   and   amplitude  are  seen   to   achieve  stationarity   after   1.6 

minutes,   confirming  the  previous  conclusions.     The  fact  that  the  phase  is 

consistent  even  during  the build-up  is  not  a  surprise  since  the  waves  are 

physically   present  before  stationarity  is   achieved,  but just  with   a  lower 

amplitude. 

6.4 person   Mnskowitz Laboratory Waye—Signal 

The  dispersive   energy  flux   and   the  recurring   reflections   of  water   waves 

in   a  closed   laboratory  basin   are  not  the  only   complications   that 

experimentalists   must  consider.     For  reasons   not  well   understood,   the 

spectrum  of the   measured  waves  in   many   wave  basins   does  not   correspond 

exactly  to   the  FFT-based   spectrum  programmed   into   the  wave  generator 

(this  is   true  even   with  the  convenient  use  of  orthogonal   Fourier 

frequencies).     It  is  common  practice  to   simply   subjectively  iterate  the 

program   until   the   measured   waves   are   acceptable   (Goda,   1985). 

For many laboratory tests the Pierson Moskowitz spectral form is used to 

represent fully developed, unidirectional, wind-generated ocean waves. 

The equation for this well-known spectral model is cited in many ocean 

engineering   references   and   is   given   by: 

0.81X10 -V c-0.74(g/2ttüf)4 63 

(27l)4 f5 

where  f=frequency,   g=gravitational   constant,   and   U   is   the   wind   speed. 
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Figure  6.4  illustrates  one  example of a programmed  and  the  corresponding 

measured   (after   subjective   corrections)   spectral   functions   taken   from   the 

Seakeeping Basin at the U. S. Naval Academy.    Note that the original 

spectra  have  been   converted   to   the   corresponding   amplitudes   to   better 

compare  with  HPT  estimates. 

0.07 

X0.06 

0.5 1 
Frequency (Hz) 

Figure 6.4    Programmed (- - -) and Measured ( )   Amplitude 

Functions for U. S. N. A. Pierson Moskowitz Wave Signal 

The   HPT   analysis  began   by  high-pass   (anti-aliasing)   filtering   the  data   and 

subsequently  decimating  by   15.     Two  parametric  HPT  analyses  were 

performed   using   the   following   parameter   sets: 
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total number of data points in  signal: 410 

number of points per HPT  analysis: 120, 160 

number   of   points   between   records: 30, 40 

starting   data   point: 40 

HPT  reference FFT  length  for  displays: 64 

Both analyses used a 75 percent overlap, for a total of 7 and 5 analyses, 

respectively.     The purpose of conducting two  HPT  analyses was to vary the 

frequency   resolution   to   observe   whether   this   changes   the   results. 

The measured  wave signal  is  shown  in Figure 6.5. 

Time (minutes) 

Figure  6.5     Measured  Pierson  Moskowitz Wave  Signal 
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Figure 6.6 repeats Figure 6.4 except that it details the amplitudes in the 

neighborhood  of the  spectral  peak  and  includes  estimates  from  the  shorter 

of the two HPT analyses. 

If the signal  was truly  stationary  (e.g.,  no reflections from the other end 

of the tank), then HPT  should converge to the same frequency vector for 

each of the analysis.    Inspection of Figure 6.6 shows that this did not 

happen.    The next question is, is this uncertainty from HPT or is it due to 

nonstationarity   in   the   signal? 

One means of answering this is to conduct a parametric HPT study with 

different bin  resolutions.     Results  from  such  a  study  are  shown  in  Figure 

6.7  in bin  space for approximately the same frequency  span  as  Figure  6.6. 

The lines  have been  added  subjectively  to  aid  the eye in tracing  the 

evolution   of  the  frequencies   (and   amplitudes)   from   the  two   analyses 

versus  time.     The HPT  segment lengths  were chosen  to  insure that the bin 

resolution  was  greater  than  the  0.025   Hz  spacing  used  for the  wavemaker 

frequencies   (dotted   lines);      the   corresponding   bin   resolution   relative   to 

Figure  6.7  is approximately 0.5. 

In  general,   the  two   HPT  patterns  are  similar,  implying  that  the  variability 

is   inherent   in   the   signal   rather  than  being   an   artifact  of  the  technique. 

Additional   HPT   information,  for  example  from  the  phase  continuity  plots 

(not  presented  here),   support  this  conclusion  that  the  signal  is  not 
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comprised   of  sinusoids  with   equally-spaced   (Fourier)   frequencies.      One 

plausible   cause   for   this   uneven   frequency   spacing   is   internal   resonances 

in the hydraulics for the wavemaker.  This could  also  explain why it is 

typically  necessary   to   subjectively   adjust  laboratory   wave  generators   to 

get  the  desired   spectrum,   namely,   that  the  actual   component  frequencies 

are   not  orthogonal   and   therefore  leak  finite  energy   to   neighboring 

frequencies.    While one study such as this is not definitive enough to draw 

reliable  conclusions,  it once again  demonstrates  the potential  of HPT 

information    for   real-world   engineering    applications. 

6.5. Erigalfi Hsaxs and Wave—Signals 

This   last   section   introduces   a  new   conceptual   argument   that  reinforces   the 

use  of HPT   for  interpreting   signal  characteristics.     This  example  involves 

two correlated laboratory signals measured at the U.  S. Naval  Academy:     a 

broadband  wave and  the  associated  heave response of a  model  frigate  (FFG) 

in beam seas.     Details are reported in Zseleczky and Wallendorf,   1994.     The 

data is in fact collected from two  separate tests.     The first measures  waves 

with the FFG out of the water, while the second uses the same pattern of 

waves  from  the  wavemaker  with  the  model  present;     this  insures  that  the 

wave   measurement   is   not   contaminated   with   radiated   waves   from   the 

model.      (The   wavemaker  has   been   proven   to   reliably   and   repeatably 

produce  identical  time  series  if the  same  program  is  used.) 
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The HPT  analyses used  the following parameters: 

total number of data points in signal: 600 

number  of points per HPT  analysis: 200 

comparable   FFT   length: 256 

number  of points  per  shift: 50 

starting   data   point: 60 

HPT  reference FFT  length  for display: 128 

sampling   period   (sec): 0.333 

Example  amplitude  versus  bin  number  results  from  HPT  are  shown  in 

Figure 6.8  for one segment of the waves  (excitation)  and FFG heave 

(response).    Because a  128 point FFT length was used as the reference for 

these HPT results, the programmed components based on a 256 point FFT 

would  be  expected   at  half bin   spacings   (i.e.,   twice  the   inherent  resolution 

of a 128 point FFT). 

Figure  6.9  illustrates  HPT component evolutions  of both  signals  over  a 

representative  bin  number  range.     The  significance  of Figures   6.8   and  6.9 

is   how   remarkably   similar   and   invariant   corresponding   bin   numbers   are 

over the entire band.    This provides  a  strong  argument  that  the  HPT 

estimated frequency  vectors are  correct since  this is a  linear system,  and it 

is a property  of linear systems  that linear superposition  holds  and the 

component   frequencies   are   invariant. 
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&JL Chapter      Summary. 

This  Chapter has  demonstrated  the use of Harmonic  Phase  Tracking   (HPT) 

using a variety of physical signals.    In each case the HPT results added 

significant   information   not   available   from   either   harmonic   analysis   or 

traditional  spectral  analysis.     While it is true that some of the high 

resolution  signal  processing  techniques  such  as  MUSIC  could  have been 

applied to the tide and rank 4 wave signals, the Pierson Moskowitz and FFG 

signals  had  much  higher rank  and  are  not  good  candidates  for  those 

techniques. 

The  capability  of HPT  to  identify  and  track  individual  wave  components 

has   many   engineering   applications.      This   Chapter  has   demonstrated   only   a 

few   of  those   applications   with   respect   to   ocean   engineering,   such   as 

detecting  the  arrival  of a reflected  wave  in  a  laboratory basin  or  actual 

frequency   vector   from   a   wave   generator,   . 

Also, HPT was used in the FFG study to estimate the frequency response 

function  of the  wave:heave  system.     Those  results  were  essentially 

comparable  to   standard  FFT-based  estimates  using  cross  spectra  and   are  not 

shown.     While  the  examples  in  this  and  the preceding  Chapter have 

demonstrated   the  large  bias  inherent  in  FFT-based  absolute  phase 

estimates,   the  relative   difference  between   these  phases   is   typically 

correct.    Given that the FFT consistently  biases the  absolute phases  this 
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conclusion  is  perhaps  not that  surprising.     Accordingly,  it  is  concluded 

that the use of HPT does  not provide any additional  information  compared 

to   the   tremendously   less   computationally-intensive   spectral   methods   when 

system functions are under study.    On the other hand, if HPT is used to 

investigate  other  signal  characteristics,   then  as  shown  in  Chapter  7  it  does 

provide  reliable  estimates  of  the   magnitude   and   phase  of  frequency 

response    functions. 

Chapter 5  demonstrated that HPT is capable of handing all  of the 

characteristics   expected   in   stationary   and   slowly-varying   multiharmonic 

signals.     This   Chapter  continued  that  investigation  by  showing   that  the 

technique   readily   modeled   forced   (i.e.,   directly   generated   by   astronomical 

or    physical  means) wave signals.     The foundation is  now complete for the 

study of free ocean waves in Chapter 7. 
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CHAPTER 7 

HARMONIC PHASE TRACKING ANALYSIS  OF 

OCEAN WAVE FIELDS 

ZJ. Chapter Introduction 

This  Chapter  uses  Harmonic  Phase  Tracking  (HPT)  to  describe ocean  waves 

in  an  entirely  new  way.     Both  temporal  and  spatial  investigations  are 

presented   that,   in   a  manner  of  speaking,   allow   for  "locally  deterministic" 

interpretations   of  the  ocean   surface   rather   than   the   less   informative   "sum 

of   an   infinite   number   of   sinusoids   with   infinitesimal   amplitudes   arriving 

from  a  continuum  of directions"   or  "sum  of orthogonal   sinusoidal  basis 

functions". 

As  described  in  Chapter 2,  traditional  ocean  wave  analysis  assumes  that 

since   the  signal   is   stochastic   with   unknown   characteristics,   the  choice  of 

analysis   tool   must  be  general   enough  to   accomodate  any  conceivable 

characteristic.     As  a result,  orthogonal  methods  such  as Fourier  Series  and 
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most   recently   the   closely-related   wavelet   techniques   are   commonly   used. 

Both of these are low resolution techniques;    for example, the spectrum is 

only   capable   of  estimating   averaged   quantities   over  frequency   and   time. 

So,  while this is  a safe approach that does describe the entire wavefield, 

the  disadvantage  is  that  the information  it  provides  does  not  provide  much 

physical  insight  into  the  local  behavior  of individual  waves  or  wave 

packets. 

The objective of this Chapter is to demonstrate how HPT  can more usefully 

quantify local  wave fields in time and space.     Two representative sets  of 

wave data are used.    As described in Section 7.2, all of the wave 

measurements  were  provided  by  the  Army   Corps  of Engineers  Field 

Research Facility at Duck NC.    The first set of waves was selected to 

represent   (quasi-)   stationary   conditions   and   is   presented   in   Section   7.2. 

The   second   highly   nonstationary   wave   set   corresponds   to   Hurricane   Bob 

in  1991.    This is described in Section 7.3 and is the focus of this Chapter. 

Chapter   conclusions   are   summarized   in   Section   7.4. 

1*2 Description    of   FRF    Wave   Data 

The  waves  were  selected  from  measurements  made by  the  Army  at  their 

Field Research Facility (FRF) at Duck NC.    The general  area is described by 

Birkemeier,  et.  al.,   1985.     Essentially,  this section of coast has a straight 

coastline  and  a  very  gradual   increase  in  water  depth  parallel   to  the  shore. 
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The data used  in this  study comes  from an  orthogonal  array of pressure 

sensors located  1  km offshore and bottom mounted in 8 meters of water.    As 

stated  in  Chapter 2,  this  depth  is  sufficient  to  avoid  strong  nonlinearities 

in   the  wave  surface   and   the  corresponding   coupling   in   the   frequency 

domain  components.     The  long   (predominantly   North-South)   axis   of the 

array  is parallel  to  the  8m depth  contour. 

Figure  7.1   shows  the  general   arrangement  of the  gages  used  in  this   study. 

The numbers refer to  the  gage identifier.     The coordinates relative to  the 

local origin (Gage 131) are given in Tables 7.1a and 7.1b.    The North-South 

axis descriptor refers to  the long axis parallel  to the 8m contour,  and  the 

East-West  descriptor  is  then   the  on-shore  orthogonal   axis. 

Gage   Number 
North-South 

Coordinate   (m) 

East-West 

Coordinate   (m) 

191 189.9 -0.2 

181 155.3 -0.2 

171 130.0 -0.5 

111 25.0 -0.1 

121 15.3 -0.1 

131 0 0 

151 -39.9 -0.2 

161 -64.9 -0.3 

Table 7.1a.    Coordinates for North-South Array FRF Gages 
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Gage   Number 
North-South 

Coordinate   (m) 

East-West 

Coordinate   (m) 

211 -0.1 -79.9 

221 0.1 -39.8 

231 0.1 -9.8 

131 0 0 

241 0.2 20.3 

251 0.1 40.2 

Table 7.1b.    Coordinates for East-West Array FRF Gages 

Note that  the maximum  gage  separations  are 255m  and   120m  in  the  North- 

South  and East-West directions, respectively.     Second,  it is noted that data 

from  Gage 221   was used  in the  quasi-stationary HPT  analysis in  the next 

section,  but  this  gage  was   not  working  for  the  hurricane  waves   and   Gage 

231  was used instead.    Regardless, each analysis had data from  12 gages 

available. 

The data was  sampled  at 0.25  second  intervals  for  the quasi-stationary  data 

and  0.5  second  intervals  for  the hurricane data.     The pressure data was 

digitally  recorded   at  the  FRF  for  approximately  2-2/3   hours  over  3   hour 

intervals,  so  it  is  essentially  continuous  for the purposes  of this  study.     The 

pressure   was   low-pass   filtered   and   converted   to   instantaneous   amplitude  at 

the  FRF  prior  to  distribution. 
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7.3 Quasi-stationary Wave Eteli—Analysis 

It  was   inferred   from   inspection   of  monthly   summary   statistics   reports 

provided by the FRF that the waves on the morning of September  13   1990 

were  very   stationary,   at  least  as  measured  by  the  significant  wave  height 

and  peak  period  averaged  over  3   hour intervals.     Supportive 

environmental  statistics  are presented in Table 7.2.     In  addition to  the 

observations  in  Table  7.2,  visual  and radar  estimates  of the  wave  direction 

were consistent at 90 to 95 degrees on the mornings of 12,  13 and  14 

September.     Waves starting  at 0400  on  September  13  were chosen  for 

detailed    analysis. 

Time   (hrs) 

Wave Descriptors Wind   Descriptors 

RMS  (m) Tpeak (sec) Vel   (m/sec) Dir   (deg) 

0100 0.24 12.2 4 52 

0700 0.23 12.2 6 50 

1300 0.24 12.2 5 48 

Table   7.2      Environmental   Parameters   for   Quasi-Stationary  Waves 

The FRF data was prepared prior to  the HPT  analyses  to emphasize the main 

bandwidth.     Both low and high pass filters were used to minimize low 
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amplitude "noise", and the data was then decimated to yield a time step of 2 

seconds.    A sample of the waves is shown in Figure 7.2.    Spectra for Gage 

131  based  on hourly  averages  are  shown  in Figure 7.3,  representing  5 

hours of wave data.    256-point FFTs were used, with 3  degrees of freedom 

(DOF)  per spectrum.     These  five spectra  are reasonably  stationary  in  form, 

with rms values of: 0.170, 0.171, 0.173, 0.161 and 0.172 m, respectively;    peak 

periods are:  11.59,  11.65,  11.32,  11.59, and 11.65 sec, respectively. 

0 12 3 4 
Time (minutes) 

Figure 7.2     Sample Wave Data for Quasi-Stationary Analysis 

Note  that  this  wave  field   is  unimodal   and   very  narrowbanded   (which  is 

why the data could  be low  and  high  pass filtered  with  no  loss  of significant 

information). 
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Figure 7.3    Spectra for Quasi-Stationary Wave Data;    solid lines = 

0400-0650, dashed line = 0700-0755, dot-dash line = 0755-0850. 

The   only  step  associated  with  using   HPT  is  specifying  the  segment  length. 

The  default  segment  length  for  all   of the  wave  analyses  in  this  Chapter 

was 300 points = 600 seconds =  10 minutes.    This was consistent with 

recommendations  for  spectra  in   Tucker  (1991)   and  is just  shorter  than  the 

20 minute segments recommended by  Goda  (1985).     However,  since HPT 

uses  a 25  percent extension before  and  after this  300 point segment,  it 

effectively  uses 450  points  (or   15   minutes)  per HPT  analysis.     Therefore, 

512-point   segments   were   defined   as   having   equivalent  resolution   for   any 

complementary    spectral    calculations. 
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One  final  observation  is   made  regarding  comparisons  between  HPT  and 

FFT-based  frequency  domain  mappings.     Since HPT   allows  for  arbitrary 

frequencies   for   each   segment,   simple   averaging   of  "similar"   components 

among the segments is not as well defined as with the FFT and/or 

spectrum.    This is not necessarily an advantage of the FFT;    recall how 

poorly  a  FFT  models  nonstationary  signals  with  non  constant  frequencies 

as presented in Chapter 5.    Thus, in some instances it will be more 

consistent to compare HPT results to raw (i.e., based on one  FFT) rather 

than   ensemble-averaged   spectral   functions   to   best   appreciate   the 

differences between  the two  techniques.     This  is  done  with  full 

understanding   that   the   resulting   Fourier   transforms   are   statistically 

unreliable  with   100  percent  error bounds.     The  choice  of using  raw  or 

averaged   spectral   functions   and   the   consequences   will   be   carefully 

expressed   whenever   either   is   used. 

For  example,   consider  calculating  raw  512-point  spectra  for  many  of the 

gages over the  same time  interval.     (This is  in fact the correct 

interpretation   of  ensemble   averaging   if  the  wave  field   was  indeed 

spatially   stationary.)     This  was  done  using  wave  records  near  the 

beginning of the 0400 block.    Gages  111, 251,  161, and 211 were selected 

based   on  the  approximately-equal   separations  of  100  meters.     The  energy 

spectra  were  converted  to  amplitude  spectra  and  are  shown  in  Figure  7.4a. 
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They   are   reasonably   similar   considering   the   separation   between   the   gages 

and  the  lack  of averaging. 

The  same  functions  near the  spectral  peak  are  included  in Figure 7.4b, 

superimposed with HPT amplitude estimates for the same gages and the 

same  time  period.     There  are  several  important  conclusions  from  this 

figure.     First, observe the consistency of most of the HPT discrete 

frequency  estimates  over  the  entire  band.     Second,  the HPT  amplitude 

estimates  are  likewise  generally  consistent  among  the  four  gages.     And 

third,   and  perhaps   most  important,   observe  how   the  general   peaks   from 

the  two   techniques  are  not  particularly  consistent;     the  most  obvious 

difference  is just above bin  22 where HPT shows  a large component with 

an  amplitude that  is  comparable to  the  spectral  peak  which  is  not detected 

by the [raw] FFT estimate.    The same is true between bins 16 and 18, and at 

bins 20.5  and  21.3  where  the large harmonics  are not at integer bin 

numbers   and   are  hence  averaged  by  the  FFT   into  neighboring  bins. 

Given  these differences, just how  accurate are these HPT  estimates?     Are 

they  representative  of the  actual   components   (packets)   in   the  wave  field, 

or are they numerical  artifacts?     And if they are true,  are the FFT estimates 

that biased?     Answering this is  addressed  two ways.     (Analytical 

expressions for HPT bias  and  variance were not found  in  this  study;     that 

topic  is  addressed  in  the next Chapter.) 
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First,   recall   that  Chapter  5   did   present   a  brief investigation  demonstrating 

that HPT  results  were  fairly  insensitive  to  the initial  starting  vector;     one 

additional   example  is   presented   here  that  confirms   that   conclusion  for 

ocean waves.     Figure 7.5  details  two independent HPT estimates around the 

spectral peak for Gage 211.    The one labeled "d" was independently 

calculated  directly  from  the time  series  using  the procedures  in  Chapter  4. 

The other estimate labeled  "c"  used the converged HPT estimate from Gage 

161  for the  initial  frequency vector.     Observe that the two  estimates  are 

strikingly  similar  in  frequency  and  amplitude.     This   is  the  first  evidence 

that HPT results  are at least consistent for ocean waves. 

0.12 

15 20 25 
Bin Number (Frequency (Hz) = Bin/256) 

Figure 7.5    Consistency of Direct and Correlated HPT Estimates for Gage 211 
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The second  and better method for assessing the accuracy of HPT results is 

to  analyze  a  series  of overlapping  time  series  segments  and  inspect  the 

component   parameter   evolution.      This   approach   was   illustrated   numerous 

times  in  the  last two  Chapters  and  is particularly  informative in  cases  like 

this  where the signal  is  known  to be stochastic.     Inspection of the 

evolutionary   results   allows   for   "smoothing"   of  frequencies   and/or 

amplitudes   in  time  according  to   the  observed  trends,  thereby  defining 

individual   packets   with   "averaged"   rather   than   "raw"   parameters. 

Figure 7.6  shows the evolution of HPT components for Gage  131  for this 

stationary wavefield.     A  shift of 2 minutes,  or 20 percent,  was used relative 

to  the   10  minute analysis  segments  (i.e.,   80 percent overlap).     The  first 

observation   is   that  there   appear   to   be  definite,   discrete   wave   "packets" 

with   slowly-varying   frequency   and   amplitude.      This   is   an   encouraging 

conclusion  since  the  HPT  model   assumes  a  finite  summation  of discrete 

harmonics  to  model  the signal.     This is  also the first confirmation by HPT 

widely-held   suspicions   that   the   ocean   does   self-organize   into   discrete 

packets  that persist for  time  scales  of minutes  or  longer. 

The  second  observation  is  that  almost  all  of the  frequencies  of these 

packets  steadily  decrease  in  time,  many  at  a  surprisingly high  rate.     This 

may   or   may   not  indicate   true   long-term   downshifting   of  energy   to   lower 

frequencies.     Recall   that  Chapter  5   presented  one  analytical  example  of 
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three   stationary   harmonics   where   the   instantaneous   frequency,   and 

hence   the   HPT   estimated   frequency,   showed   an   apparently   nonstationary 

"sawtooth"   type   behavior   defined   by   a   steadily-decreasing   frequency   over 

much of the wave cycle followed by a ill-defined rise to begin the steady 

downshift again.     This was illustrated in Figure 5.19.     In some respects, the 

patterns  in  Figure 7.6  for these  ocean  waves  are similar to  the  analytical 

patterns,   which   leads   to   a  preliminary   conclusion   that   the   phenomena   are 

related.     However,   there  is   also  a  fundamental   and  important  difference 

between   the   ocean   and   analytical   component  evolutions   -   namely,   that  the 

ocean packets  show  a  large degree of overlap relative to  the  steady 

downshifting   intervals   that   is   not   present   in   the   analytical   counterpart. 

The  concept  of HPT  phase continuity  introduced  in  the  last  two  Chapters 

can   be   used   to   great   advantage  here   to   reliably   determine   whether   these 

HPT-identified   packets   truly   represent   physically   continuous   wave   forms. 

The definition of a packet is open to debate;    for the purposes of this 

investigation,   a  packet  ends   when  the  bin   number  changes   by   more  than 

half of the bin  resolution of the associated HPT analysis  -  (this partly 

explains  the  reason   for  the  high  degree  of overlap  between  adjacent  HPT 

analyses   -   namely,   to   track   nonstationary   frequency   shifts)   or   when   the 

amplitude  is     negligible  in  the  next  HPT   estimate.     Frequencies,  amplitudes 

and   phases   for   two   representative  packets   are  presented   in   Figures   7.7   and 

7.8.     The first packet evolution  in Figure 7.7a has  a relatively constant 

frequency   versus   time   and   accordingly   is   labeled   "stationary".      This 
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particular packet is  most  easily  correlated  with  Figure  7.6  using  the 

frequency   information   in   the   upper   figure.      But   although   the   information 

in  Figure  7.7a  is  relatively  well-behaved,  it  cannot  be  considered 

definitive in terms  of proving  that a physical  packet exists;     for that we 

need  to  inspect the phase function  in  Figure 7.7b.     Together,  these figures 

show  that  this   subject  packet  was  generally  continuous,  with   some  phase 

and   frequency   distortions   evident   between   60-67   minutes   (recall   that 

these  HPT  analyses  used  a   10  minute  segment  that does  introduce inherent 

averaging   over  that  time   scale).     Interestingly,   according   to   Figure  7.6   this 

is  the  time  when  a  second  packet from  a higher frequency  merges  into  the 

subject  packet.     A  second  packet  merges,  again  from  a higher  frequency, 

just after 70 minutes.    While this merger is not reflected by a phase 

distortion,  it does  result in  a significant  increase  in  the  amplitude of the 

subject packet,, as might be expected.    All of these observations lead to the 

tentative   conclusion   that   HPT   parameters   may   truly   reflect   physical 

processes   in   the   wavefield. 

The  second  packet  example  corresponds  to  a  packet  with  a  changing 

frequency;   this  is  labeled  the  "nonstationary"   packet  and  is  plotted  in 

Figures 7.8a and 7.8b.    Correlations to Figure 7.6 will show that this is, in 

fact,  the first packet  that merged  into  the packet used  in the discussion 

immediately  above.     Observe  the  steady,  well-behaved  decrease  in  the 

frequency  and   increase  in   amplitude.     However,   it   is  the  phase  function   in 

Figure 7.8b that is the most informative.    It shows two time spans with 

large phase distortions.     The first  span, between  25  and  32  minutes, 
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corresponds   to  very  low   amplitudes   (Figure  7.8a),   which   illustrates  how 

difficult  it  can  be  to  correctly  interpret these phase  figures.     The  second 

time  span  with  phase  discontinuities  is  at  the  end,  where  this  packet 

merges  into   the  previous  packet  (or  does  the  previous  packet  merge  into 

this one?).     As before, all of the HPT parameters for this packet provide 

information   that  is  consistent  with  the  behavior  of adjacent packets. 

Inspection  of the parameters  for other packets  was  similar and is 

therefore   not   presented. 

Based on these discussions, it is proposed that the HPT wave packet 

information   shown   in  Figure  7.6   does  model   the  wave  field  much  better 

than   the   traditional   spectral   (or  wavelet)   model   with   respect   to 

understanding   the  underlying  physics.     Since  the  focus  of this  wave  study 

is   the  hurricane  waves  in   the  next  section   no  further  study  of these 

stationary waves is presented.    As given in Table 7.2 the rms value was 

only 0.25m,  which  means  that the  energy  in  the primary wave  signal  is  so 

small  that  it could  have been  easily  corrupted by waves  from  many 

incident    directions. 
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7.4   Hurricane    Bnh    Wave Ekld Analysis 

This section is divided into three subsections.     Subsection 7.4.1  describes 

the overall storm.    Subsection 7.4.2 presents a variety of HPT estimates 

regarding   packet   characteristics,   wavelengths,   and   incident   direction 

versus  segment length  and  selects an  "optimum"  time span for 

quantifying  these waves.     Subsection  7.4.3  contrasts various  wave field 

descriptors  for  Hurricane  Bob  during  the build-up,  at  the peak,   and  after 

the   peak. 

7.4.1      Overview   of   Storm 

Hurricane Bob was a large storm that passed 40-48 km offshore of the FRF 

on August 18 and 19,  1991.    The maximum wind speed exceeded 23 m/sec 

around   midnight,   with   a  maximum   significant  wave  height  of 4.8m. 

Further   information   regarding   the  storm   is   available  from   the  FRF 

Preliminary  Data  Summary  for  August   1991   and  other  sources. 

Figure 7.9  shows  the significant wave height (defined  as 4  times the rms 

value) at Gage 131 starting at 1900 on August 18  1991 for half hour 

averages.     The solid lines connect estimates from contiguous data blocks of 

data;    the dotted line is midnight. 
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0 2 4 6 8 
Hours after 1900, August 18 1991 

Figure  7.9     Significant Wave Height  for Hurricane  Bob 

Corresponding   spectra   are   shown   in   Figure   7.10   for   "preliminary   data 

inspection"   purposes.     Observe  the  rapid   growth   and   subsequent  decay  of 

energy in the peak just below 0.1  Hz during the 2200-0030 time span 

(which   has   a  different  ordinate   scale  than  the  other  two   subfigures)   and 

the   emergence   of  the   higher   frequency   secondary   peak   during   the   last 

three   hour    interval. 

These   spectra  were  based  on   256-point  FFT   lengths,   which   corresponds  to 

8.5   minute  subrecord  lengths.     It  is  instructive  to  explore  how  useful  these 

spectral   estimates   actually  are.     Several   aspects  must be  examined  to 

answer this.     The peak period in Figure 7.10 was  15  seconds;     thus, each 
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segment contained  approximately  34  wave  cycles.     This  is  the  minimum 

number  of cycles  recommended  per FFT  to  produce reliable  estimates. 

However,  there were  only 4 ensembles  in  each  half hour  spectral  average 

which is far short of the 20 to 30 degrees of freedom recommended for 

standard spectral estimates (e.g., Goda (1985)).    If this FFT segment length 

was   retained   to   quantify   this   wavefield,   then   further   algebraic   frequency 

averaging  would  be  required  to  achieve  the  minimum  20  degrees  of 

freedom  (in  this  case,  averaging  over every  5  frequency bins  and 

reducing   the   frequency   resolution   accordingly).      Assuming   that   the 

frequency   resolution   after   such   averaging   was   not   considered   acceptable, 

then  the  only  remaining  parameter  to  change  is  the FFT  segment  length  to 

increase  the  number  of ensembles.     Simple  inspection  of Figure  7.10 

clearly  shows  that  the  spectrum  is  changing  on  a  time  scale  even  shorter 

than   this   reference   half  hour   segment   length,   so   the   nonstationarity   of 

the   signal   makes   increasing   the   number   of  averaged   ensembles   an 

unacceptable   option.      This   is   the  classic   "time-frequency   ambiguity"   and 

in  this  case  it  leads   to  the conclusion  that spectral   tools  are  applicable  only 

as   preliminary   analysis   tools   to   nonstationary   storm   events   such   as 

Hurricane Bob.     Fortunately, HPT estimates will be shown to be quite 

informative   for   this   event. 

7.4.2      HPT   Parametric   Studies 

This   subsection   has   two   objectives   for  this   highly  nonstationary   wave 

signal:     (1)  demonstrate that HPT results  are robust with  respect to the 
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choice of segment length,  and (2)  introduce how  HPT is capable of 

estimating  the  wavelength   and  incident  wave  direction.     Data  from  the 

1900-2150  wave  data block  (during  the initial  build-up  of energy)  were 

used  as  representative of the entire storm.     The subsequent  subsection  will 

then investigate how HPT can be used to quantify the wave field 

corresponding   to   this   storm. 

The  only  independent  parameter  for  HPT   analyses   is   the  segment  length, 

and  the objective here is to  establish the optimum  segment length.     As 

with   many  other  numerical   techniques,   this   is   a  compromise  since   long 

segment   lengths   increase   frequency   resolution   but   short   lengths   improve 

stationarity  and  computer time.     The most  direct  approach  is  to  analyze the 

data  with  different  lengths  and  visually  inspect  the results.     Figures  7.11a, 

b, c, and d show various combinations of results for Gage  111 

corresponding  to  the  HPT   analysis  values  in  the  following  Table: 

Descriptor 
Segment    Length 

(min) 

Segment   Shift 

(min) 

Reference 

Longer 

Shorter 

10.0 

12.5 

8.0 

2 

2.5 

1.6 

Doubled 20.0 4.2 
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Figure 7.11a shows that all of the results for the 8,  10, and 12.5  minute 

segments   are   reasonably   consistent;      packets   are   generally   superimposed, 

and   there  are  many  areas  where  none  of the  techniques  found   any 

appreciable  components.     Figure  7.11b  shows  that  the  reference  and 

longer  segment  results   are  indeed   similar,   while Figure  7.11c  shows  the 

shorter   segment  results   starting   to   diverge   (for   example,   observe   the 

estimated  amplitudes  at position  (18.4,  85)). 

Figure  7.1 Id   shows  the  wavefield  evolution  corresponding   to  the  doubled 

segment  length.     It  is   apparent  that  the  wave  packets  exhibit  much   less 

variance compared to the previous results.     So  while it is  possible to 

conclude   that   these   doubled   results   are   inconsistent   with   the   previous 

shorter-length   results,   it  is   still   unclear  as   to   which   segment  length  best 

represents   the   physical    wavefield. 

As  before,   the   most  definitive  test  for  the  optimum   segment  length   comes 

from   inspection   of   phase   continuity   for   representative   packets.      Figure 

7.12   illustrates  HPT  packet  evolution  across  the  spectral  peak  region  using 

the  reference  (10   minute)  results.     Figures   7.13a  and  b  illustrate  the 

evolution   of   one   representative   packet   with   significant   energy   indicated 

by the  solid  line  in Figure 7.12.     This packet shows  reasonably constant 

frequency,  with  an   amplitude  that  grows  then  decays  similar  to  a  classic 

wave  "beat".     The phases  are  very consistent except for  a short time 

between 72 and 80 minutes.     Besides the fact that the 
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amplitudes   are   somewhat  small   and   therefore  could   be  unreliable,   the 

reason  for this poor  agreement is  unknown;     it could be argued  that a 

lower  frequency  packet  was  "created"   around  the  same  time,  and  that this 

new packet somehow effected the phases for the subject packet.     Note that 

the total  duration of this particular packet is over 70 minutes.     Since the 

HPT segment length  is  nominally  10 minutes  and at most  15  minutes 

accounting  for  the  forward  and  backward  time  shift  extensions,   the phase 

continuity   in   Figure   7.13b   cannot  be   attributed   to   numerical   correlation 

effects,  so  it is proposed  that it reliably  denotes  a physically present 

discrete   wave   packet. 

The  next  step  towards  identifying  the  optimum  segment  length  for HPT 

was to inspect phases for the packets estimated by the doubled HPT 

segment  analyses   shown   in  Figure  7.lid.     A  representative  phase 

continuity  function   (for  the  packet  that  is   centered  on  Bin   19)   is  shown  in 

Figure 7.14.     It is quite apparent that these estimates do not represent a 

single   sinusoidal   component,   especially   so   considering   the   large   80 

percent  overlap  between   adjacent  HPT   analyses.     Based  on   these  phase 

results,   the   10  minute  segment  length  was  chosen  for  the  wavefield 

studies. 

By way of contrast, Figure 7.15  compares HPT (10 minute)  and FFT results 

along with the wave record for Gage 111.    The FFT results, based on 512 

point  =   17   minute  transforms,   are  far  less   informative  and  qualitatively 

quite  different  compared   to   the  HPT   results. 
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The third  check  for evaluating  the  HPT results  comes  from  relative 

comparisons   among   neighboring   gages,   which   complements   the   temporal 

checks  with  spatial  checks.     Recall  that all  wave records  show  correlations 

that are a function of the separation, less so orthogonal to the direction of 

wave advance (see Chapter 2 for the discussion on short crestedness  and 

the coherence of the wave field).     For example, Figure 7.16 has  correlation 

functions  for  gages  separated   in  orthogonal  directions  by   130m;     since  the 

incident direction  was  within  30  degrees  of the East-West  array  axis,  the 

two   axes   are   approximately   aligned   in-line   (upper   figure)   and   orthogonal 

(lower figure)  to  the direction  of wave advance.     Observe that the 

correlation   functions   appear   as   damped   sinusoids,   consistent   with   the 

narrowbanded   nature   of  the   signal,   and   that  the   maximum   correlation 

orthogonal   to  the  wave  advance  is  significantly   lower  compared  to  the  in- 

line   maximum. 

Figure 7.17 presents the HPT estimates for the same gages used in this 

correlation  study (approximately 0415-0425,  August  18,   1991).     Most of the 

frequencies   are   very   consistent   among   the  gages,   with   some   scatter 

evident  right   at   the  peak   frequency.      Amplitudes   show   moderate 

variances. 
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Figure 7.17    HPT Estimates for Gages at 130m spacing; 

a = Gage 131, b = 251,  c = 161,  and d = 211; 

The variability present in Figure 7.17  is most likely due to  spatial  non 

homogeneity in the wave field for some packets.     HPT  allows for further 

resolution   of  this   variability   by   comparison   of  equivalent   component   (i.e., 

packet)  evolutions  between   any  gages  of interest.     Several   examples  are 

presented next.     The first example shown  in Figures  7.18a and b  compares 

HPT  estimates  for  Gages  251   and   211,  which  are predominantly  in-line  with 

a spacing of 120m.     (Note: the symbol diameters 
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corresponding   to   amplitude  in   each   figure   are  normalized  relative   to   the 

maximum   amplitude  over   that  customized  frequency   and   time   span; 

otherwise,  evolution  plots  outside of the  peak energy  would  show  very  few 

estimates   with   significant   amplitude   and   would   accordingly   be 

uninformative.     This explains  why pairs of plots like Figure  7.18  show 

comparable  amplitudes  when  the signal  is  known  to be very 

narrowbanded.) 

The  frequencies,   amplitudes,   and  duration   of the  wave  packets   estimated 

within   the   primary   bandwidth   of   energy   (Figure   7.18a)   are   very 

consistent  between   the  two   gages,   while   the  packets   over   the   secondary 

bandwidth   are  less   consistent;     Figure  7.19   details  two   equivalent  packets 

from  Figure  7.18a.     The  reduced   consistency  at  higher  frequencies   in 

Figure  7.18b  is  expected  since  the  gage  separation  is  approximately  one 

wavelength   relative   to   the   peak   frequency   but   multiple   wavelengths   for 

the  frequencies  in  the  second  figure.     Or,  it could  be hypothesized  that 

packets   tend   to   self-organize  over  a  relatively  constant  number  of wave 

cycles,   resulting   in   run   lengths   inversely   proportional   to   frequency.      This 

was  not explored  in  this  study. 

The  second  example,   shown  in  Figure 7.20,  compares  HPT  estimates  for 

Gages   111   and   191,  which   are  predominantly  orthogonal  to  the  direction  of 

wave  advance  with  a spacing  of  165m.     This  wider separation  reduces the 

260 



maximum  correlation  coefficient  to 0.48,  which  is  reflected  in  the reduced 

consistency  in  the  wave  packets   (although  there  is   still   a  general 

Bin Number vs Time 

20 

20 

30 40 50 
Abs(HPT Amplitude) vs Time 

30 40 50 
Time (minutes) 

60 

Figure  7.19     Comparison of Equivalent Wave Packets  for 

Gage 251 (o) and Gage 211 (*) 

correlation  for  many  of the  packets).     Figure  7.21   shows  equivalent 

packets  for  these  two   orthogonal   gages,   which   appear  to  be  reasonably 

consistent   considering   this   gage   separation. 

The  directionality  of the  waves  was  assumed  for  these  previous  examples 

based on FRF observations for the whole wavefield.    However, just as with 

261 



....... 

o %    s 
0 rv_v»- 

o° ösi^O 
"C0$xf 

<%0O 
CO 

Q 

OS 

O     o 

SB 

^oo 

00     O°Q^> 

^° 
00 

QS IS 

oo~ 
o   ^ o 

ja 

o~ • & • ■ 
Q ® Q 

rf> 

■ • Jä?«^ °**-*£?r 

o ®s     °^ 
«a     0     #s 

^ 

eg 
CM 

CM 

CM CM 

m 
11 

cnx^ 
>» o 
c 
CD 

O" 
CD 

00 ,T 

0) 

E 
z 

: c 
in 

CO 

m 

(seyiujw) 9LU!i jajueo 

CO 
o 
60 

o 

00 
O 
a 
W 

03 

> 
o 

c 

"o 
> 

c 
u 
c 
o 

E 
o 
U 

&. 

o 

00 

o 
m 
ü 
c 
ea 
o 

t 
X 

S      2 

•©. 

o\ 

S 
es 

262 



o 
• WH 
1- 

o\ 

o 
60 
OS 
o 
c 
es 

C 

M 
eB 
O 

o 
QQ 

E I» 
o o 

**■—*' <a c 
CD en 

CO 
u 

b O u 

H 3 
es ac 

> 
ca 

> 

C 
« 
U 
ii 
OH 
O 

OS 

u 
s 

263 



cross   spectral   estimation,   the  HPT  frequencies,   amplitudes   and  phases   can 

also  be  used  to  provide  quantitative  estimates  of the  directionality  versus 

frequency.     But using HPT estimates for directionality is not as 

straightforward as it is using FFT-based estimates.    First, it must be 

recognized   that   the   spatial   separations   typically   result   in   different 

frequency  vectors  for  all  of the  gages  as  shown  in Figures  7.17  through 

7.21.    These "raw" vectors must be compared and averaged to find a "best 

mean"  vector which  is not a trivial  step.     The criteria for selecting  this 

mean  vector from  N  gages  is  necessarily  subjective.       There are usually 

some   well-defined   frequencies   where  all   N   gages   show   good   agreement, 

with   clear   gaps   to   the   neighboring  lower  and  higher  frequencies;      other 

frequencies   may   show   a   "dual"   nature,   with   some   gages   estimating   one 

frequency   but   others   estimating   two   closely-spaced   frequencies   (typically 

encountered   when   the   segment   straddles   the  node  of  the  packet  envelope); 

while   for   some   frequencies   the   component   may   not   have   been   significant 

for a proportion of the gages  so that a lesser number of gages  are 

represented.      Defining   a   "best,   mean"   vector  requires  choices   for:   (1)   the 

frequency   limits   used   to   identify   and   collect   similar   frequencies,   (2)   the 

minimum   number   of  gages   necessary   to   define   a   frequency   deemed 

common to  all  of the gages,  and  (3) the scheme for combining raw 

frequencies   within   a  band   (for  this  study,   amplitude   weighting   was   found 

to be most effective).    With this new best vector so defined, it is used to 

define  a  total  least  squares  basis  matrix,  and  new  amplitudes  and  phases 

are  recalculated  for  all  of the  gages. 
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The   estimated   wavelength   and  the  mean  incident  wave  direction   are  found 

at  each  frequency  by  first  plotting  the HPT  phase  versus  coordinate  for 

each  orthogonal  direction.     In most  cases an  adjustment step  is  required  to 

unwrap   these   raw   HPT   phases   (another  necessarily   subjective   and   non- 

trivial  task).     Note that the (unwrapped) phase versus  coordinate is 

necessarily   linear   if  the   frequency   and   the  phase   are   constant,   which 

corresponds  to  a long  crested,  coherent wave packet.     For these  studies, 

least squares  was used  to fit a two-dimensional plane of phase versus  gage 

coordinates.     The ratio of the  slopes  in  the  two  orthogonal  directions  then 

defines   the   estimated   incident  direction.     The  component   wavelengths   in 

both   of the  orthogonal   directions   are  found   at  each  frequency  by  using 

the  component  slopes  to  estimate  the  coordinate  span  corresponding  to  360 

degrees   (one   wave   cycle),   then   combining   these   "projected"   wavelengths 

to  get  the  effective  wavelength relative to  the  incident direction.     As  an 

aside,   visual   inspection  of the  phase  continuity  in  the  two  orthogonal 

directions   defines   another   technique   for   assessing   the   continuity   of  a 

wave   packet. 

The next set of figures and table illustrate this process.    Figure 7.22 

illustrates  the  "raw"   gage  frequencies   (and  amplitudes)  for  all   12  gages  in 

the FRF array,  near the vicinity of the peak energy,  and  starting  at  1915. 

The  "best,  mean"  frequencies  are  indicated  by  the  circles  on  the  x-axis. 
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Table  7.3   illustrates   the  quantitative   information   calculated   at   each 

frequency.     The phase columns  in  the two  subtables  are defined  as: 

• "Raw"  refers  to  the original  HPT  wrapped  estimate. 

• "Adjst" refers to the adjusted (unwrapped) equivalent; in this 

example the program shifted raw values by up to two cycles to 

produce  an   "optimum"   fit  relative  to  each   orthogonal   direction; 

"Fitted" refers to the best least squares fit based on a two 

dimensional  plane fitted  to  all  of the estimates,  and 

• "Error"  refers  to  the  deviation  between  the  adjusted   and  best-fit 

phases. 

Finally,   error  bounds   appropriate  for   the   linear  fits   are   determined   based 

on   coefficients   of  determination   used   in   linear  regression   for   each 

orthogonal   (north-south   and   east-west)   direction,   RN^ and  RE^, 

respectively  (e.g.,  Montgomery  and  Peck,   1992).     Observe  that  the estimated 

and   analytical   wavelengths   are   essentially   equal   for  this   example  case. 

Figure  7.23   graphically  displays  the phase  information  from  Table 7.3.     The 

phase fit is  seen  to  be  very  good  in  both  orthogonal  directions,  implying 

that  these  HPT  estimates  do  represent  a coherent  and  long  crested  packet 

traveling   through  the  wave  field.     This  is   significant,  because   the  52m 

wavelength   corresponding   to   this   example   translates   to   relatively   large 
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Gage 

North-South    Phase 

(degrees) 

Best Linear Fit 

(degrees) 

Raw Adjst Fitted Error 

191 4 -716 -702 15 

181 106 -614 -603 10 

171 179 -541 -533 7 

111 156 -204 -232 -28 

121 -173 -173 -205 -32 

131 -141 -141 -161 -19 

151 -56 -56 -49 7 

161 -37 -37 22 59 

Gage 

East-West   Phase 

(degrees) 

Best Linear Fit 

(degrees) 

Raw Adjst Fitted Error 

211 47 -673 -668 6 

231 158 -202 -223 -21 

131 -141 -141 -161 -19 

241 -12 -12 -33 -21 

251 77 77 94 17 

Coeffic 

Project 

Estimat 

Estimat 

Table 

ients   of   Determination:        North-South=0.988  & East-West=0.995 

ed   Wavelengths   (m):            North-South=     127 & East-West=      57 

ed Wavelength (m) = 51.8;    Analytical  Wavelength (m) = 52 

ed  Incident Direction  (deg) =   114 

7.3    Example Directionality Estimate For Frequency = 0.148 Hz 
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200 
North-South Individual Gage and Linearly-Fitted Phases 

-800 
■100 -50 0 50 100 150 

North-South Coordinate (m) 
200 

200 
East-West Individual Gage and Linearly-Fitted Phases 

0- 

a^OO 

<D 
CO 

J5-400 

-600 

-800. 

Shallow water wavelength = 51.81 m 
Mean Bin Number = 37.94 

68th freq (Hz) = 0.1482 

-"80        -60        -40        -20 0 20 
East-West Coordinate (m) 

40 60 

Figure 7.23    Example Adjusted and Fitted Phases for Frequency = 0.148 Hz. 
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normalized  array  dimensions  of 5   and  2.5  wavelengths  for  the two 

orthogonal    directions. 

Figure  7.24  presents   the  statistically  valid  HPT  estimated   wavelengths 

versus  frequency,   with   90  percent  error  bounds,   for  three   different  HPT 

segment lengths and one FFT segment.    Statistically valid is defined in a 

number of ways  to  accomodate various  situations;  such  as:   (1)  valid  oblique 

incident  direction  (both RN
2
 and RE

2
 greater than 0.707, or RN

2
 plus RE

2 

greater  than   1.3),  or  a  valid  predominant  array  alignment  (only  RN
Z
 or 

RE2 significant).      Specifically,   the  normalized   wavelength   error  bound   is 

defined   as   directly   proportional   to   the   standard   error   of   the   corresponding 

component   slope   (using   linear   regression   theory).      The   lower   subfigure 

shows  FFT-based  wavelength  calculations  for     reference.     Only  one  (raw) 

transform  is used  to  be consistent with  the single segment used  in  the HPT 

calculations.     Inspection  of these four  subfigures  shows  that:  (1)  the  HPT 

estimates  are  not  sensitive to  these choices  of segment length,  and  (2)  that 

the  HPT  estimates   are  consistent  with  traditional   FFT-based  estimates. 

This  agreement between  the HPT and  FFT  results was  not initially expected. 

HPT   frequencies   correspond   to   physically-present   wave   packets   in   which 

phase  continuity   is   maximized   over  space   and   time  for   coherent,   long 

crested  packets;     since the  component HPT estimates  at each  gage 

accordingly   have   low   bias,   then   wavelength   and   incident   direction 

estimates should have low bias as well.  On the other hand, the FFT 
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8 minute HPT segment 

0.02     0.04      0.06     0.08      0.1       0.12     0.14     0.16 

10*r 

10S *1tfrhtNM^i 
0.02     0.04      0.06     0.08      0.1       0.12      0.14     0.16 

0.02      0.04      0.06      0.08       0.1       0.12      0.14     0.16 

103 
—i— —i     i—i—i—i—i— 

8.5 minute FFT segment                         " 

102 

m1 

.-^ 

■ 

fffth * ► rf r\ Trff rrff H41 
0.02      0.04      0.06 0.08       0.1       0.12 

Frequency (Hz) 
0.14     0.16 

Figure 7.24     Estimated  and  Analytical  Wavelengths  versus  HPT 

Segment  Length,   with   FFT  Reference 
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frequencies   represent   equally-spaced   convenient   (i.e.,    orthogonal) 

harmonics   with   no   physical   meaning,   so   the   individual   phase   estimates 

among  the  gages  typically  do  not  correspond  to   any  particular  wave 

packets  and  hence  are generally   highly   biased.     The answer  apparently is 

that, while the FFT estimates are all biased, they are all consistently  biased, 

and   hence   all   phase   differences,   and   subsequent   calculations   for 

wavelength  and  direction,  can  still be unbiased.     Thus,  "two  wrongs  make  a 

right"   in   the  case  of FFT-based  calculations  for  wavelength   (and   incident 

direction  on  the next figure).     If nothing  else,  this proves  the power  of 

orthogonal   decompositions   for   solving   real-world   problems. 

Figure  7.25   shows  the  HPT  estimated  incident directions  for this  example. 

Observe  again  that  the  variance  and  accuracy  of the  HPT  estimates  appear 

to  be relatively  constant for this  range of segment lengths.     The HPT 

estimates   are  also  essentially  equivalent  to   the  FFT-based  estimates.     Both 

techniques   detected   waves   with   negative   mean   incident   angles,   which   in 

this  case  correspond  to  reflected   waves  off the  beach  (observe  the  mirror 

image   reflection    angle). 

It is therefore concluded from Figures 7.22  to 7.25  that:  (1) the  10 minute 

segment length is valid for HPT studies, and (2) that in this case HPT does 

not provide  new   information  not  already  available  from  the  FFT  for 

wavelength   and   incident   direction   estimates. 
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These  last  few  pages  have  examined  whether  HPT results  are  consistent 

and   accurate   (unbiased)   measures   of this   growing   wave  field. 

Representative   figures   were  presented   to   establish   that  HPT  results   are 

indeed   consistent   with   expected   packet  behavior   with   translations   in   time 

and   space. 

The next subsection applies all of these HPT tools to a preliminary study of 

the wave field  in Hurricane Bob. 
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7.4.3   HPT    Investigation    of    Hurricane    Boh    Wavefield 

As discussed in the first part of this section and shown in Figures 7.9 and 

7.10,  the wave field  during Hurricane Bob  had  three distinct stages  with 

differing  stationarity  as  the  storm  progressed  northward  past  the FRF site. 

Figure 7.26  shows  the HPT estimated  mean  incident wave directions  at four 

times  during the storm.     The upper two figures  are before the peak and 

show  the  waves  coming  from  a  southeasterly  direction.     Both  lower figures 

are  after the peak  and  show  that the waves have  shifted  direction  and  are 

coming   from   the  northeast,   with   a  slightly  increased   variance.     This 

information   is   necessary   for   decomposing   the   wave   packet   correlations 

into  the  two  orthogonal   directions  relative  to   the  wave  advance. 

Figures  7.19  and  7.22  and  others  illustrated  packet evolution  for the first 

block of wave data from  1900 to 2140, before the arrival of the main part of 

the  storm,  corresponding  to  the  left  subfigure  in  Figure 7.10.     Figure 7.27 

illustrates   one  frequency  range  of  packet  evolution   for  three   gages  just 

before  and  during  the peak  of the  storm,  corresponding  to  the  middle 

subfigure in Figure 7.10.     HPT frequency resolution was 0.27  bins,  or 

equivalently,  0.0011  Hz.     Both  figures  show  a high  degree of consistency 

among   the   gages;      for   reference,   the   maximum   correlation   coefficient   is 

0.87 between Gages 251 and 111, and 0.59 between Gages 251 and 191.    Also, 
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both figures  show  long  durations for the packets,  typically 20  to  30 

minutes,   with   a  high   degree  of  overlapping. 

Figure 7.28  examines one of the packets for all three gages.     Further 

insight  into   the  expected   correlations   among   these  packets   can  be  found 

from  the  expected  properties  for  this  packet and  the underlying  wave. 

For  a mean  bin  number of  15.7,  pertinent parameters  are  calculated below 

using  Dean  and  Dalrymple,   1984: 

Mean   Frequency   (f) 

Mean  Period  (T) 

Wavelengths: 

Deep Water (Xo) 

Shallow   (X) 

(kh) = (2TC)deptha 

^       
Deepwater  Celerity  (Co) =     0 / T 

Shallow water Celerity (C) = C0tanh(kh) 

Cf, 2kh 
Group Velocity Cg =— 1 + ————- F B    21      sinh(2kh) 

0.0613 Hz 

16.3 seconds 

414.5 m 

77.3 m 

0.189 

25.7 m/sec 

9.4 m/sec 

4.7 m/sec 

This   latter  variable  gives  the  expected  in-line  translational   speed  of  a 

coherent packet (i.e.,  group)  in  this  8m  water depth.     Using  a mean 

incident  direction  of  120  degrees  from  Figure  7.26  yields  the  following 

relative  gage   spacings   for   this   example: 
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Figure  7.28     Representative  Packets  During   Peak  of Hurricane  Bob; 

 = Gage 251; = Gage 111, and  - • - • = Gage 191 
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Gage 
Relative   Spacing   (m) 

In-Line Orthogonal 

111 47.2 1.5 

191 185 61 

where the most-forward Gage (251) into the seas was used as the reference. 

Combining   the  packet  velocity   and  the   in-line  spacings   yields   expected 

packet time offsets of 5 seconds between Gages 251  and  111  and 20 seconds 

between Gages 251  and 191.    While these time delays are too short to be 

visible  in  Figure 7.28,  their relative sizes  are reflected  in  the  fact that  the 

packet signals  for  Gages  251   and   111  compare  more favorably  than  the 

packet for Gage  191. 

The   correlation   among   the   gages   for  frequencies   above  the  spectral   peak 

was relatively lower,  as it was with the waves before the arrival  of the 

storm  (shown  in Figure 7.18b).     Figure 7.29  illustrates packets  over a 

narrow  bin  number range for the  two  closest gages.     There  is  one possibly 

significant   difference,   however,   between   these   higher   frequency   packets 

before and  at the peak of the storm.     The duration of the packets in Figure 

7.29  are  much   shorter  than   their  complements  in  Figure  7.18b.     While  this 

could  be  tangible   evidence  of  the  previously   stated  hypothesis  that  packets 

self-organize   inversely   proportional   to   frequency,   in   this   case   it   is   more 
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likely  due  to  wave  spreading  as  the wind  direction  rotated  during  the 

passage of the storm  center. 

34 35 36 37 
Bin Number (Frequency (Hz) = Bin/256) 

Figure 7.29     Wave Packet Evolution  at Higher Frequencies for  Gages  251 

and   111  near Peak of Hurricane Bob. 
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Wave packet evolution  after the peak  of Hurricane Bob  is the next topic for 

investigation.     Figure  7.30a,  b,  and  c  show  evolutions  over different 

frequency ranges  for the wave data from  the  August   19,  0100-0335  block. 

An  interesting  observation  from  Figures  like  Figure  7.30a  is  to  track  the 

energy flux, for example at low frequencies.     It is clear that wave packets 

disappear,  with  no  recognizable  successor.     This  issue  is  most likely  related 

to  the  large  group  velocity  at  low  frequencies  combined  with  the  finite 

transit speed of the storm.    Figure 7.31  details one of the packets in Figure 

7.30a   whose   amplitude   (energy)   steadily   decreases   then   apparently 

disappears.      The  mean   frequency   is   slightly   lower   than   the   mean 

frequency  used  previously  in  Figure  7.28  but  the  group  speed  is  essentially 

the  same.     The  two  gages  are   120m  apart (1.4 wavelengths),  essentially in- 

line  with  the wave  direction  at  this  point  in  the storm,  with  a  maximum 

correlation   coefficient  equal   to   0.58.     Qualitatively,   both  gages   show   very 

similar  behavior.     The  decay   in   amplitude   is   very   consistent  between   the 

two  gages,  but  with  a 5   minute relative time lag that is much  larger than 

the  lag  based  on  the  group  speed.     These  and  other  differences  evident in 

these  figures   may  be   attributed   to   any  number  of  factors   including 

spreading/short   crestedness,   reduction   due   to   a   new   opposing   wind 

direction,   and/or   numerical   error.      Further   study   is   warranted   before   any 

of  these   "energy"   questions   can   be   answered. 
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Bin Number vs Time 

Abs(HPT Amplitude) vs Time 

25 30 35 40 45 50 
Time (minutes) 

55 

Figure  7.31     Illustration  of Disappearing  Wave  Packet  after 

Peak of Hurricane Bob, Gages 251  and 211. 
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Figure  7.30b  illustrates  packets  near  the  spectral  peak  while  the  storm  was 

decaying.     The  downshifting  is   minimal,   and  the  run  lengths  vary  from 

short to  long.     Figure 7.30c  illustrates packets  above the main  spectral  peak 

but centered  over  the  growing  secondary peak.       The packets  in  this 

growing   wavefield  are  seen   to  consistently   shift  lower  in  frequency;     run 

lengths   are   generally   short. 

The emphasis  up  to  this point  in  this  subsection  has  been  on  the temporal 

characteristics  (evolution)  of the  wave packets.     A  short discussion  is 

presented  next  focusing  on  the  spatial  homogeneity  of the  wave  packets. 

The  HPT   information   used  to   estimate  wavelengths  and   directionality 

contains  spatial  information  from  all  of the gages  over  a common  time 

interval.     This type of information was  illustrated in Figures  7.17  and 7.32 

during  the  build-up  of Hurricane  Bob.     The  main  indicator  of homogeneity 

in a wave field is invariance,  or at least a small deviation that is consistent 

with  the  gage  positions,   of the  estimated  frequency  clusters  because  that 

signifies   coherent  packets.     For   these  clusters   where  all   gages   are  present 

and   the   frequency   is   relatively  constant,   then   the  amplitude   and  phase 

can   be   legitimately   inspected   to   define   the   characteristics   of  that 

particular   packet.      Conversely,   local   regions   with   frequencies   that   are 

randomly   spaced   signify   a   "confused"   sea   where  the  homogeneity  needs 

additional   information   to  resolve.     In  the  figures   accompanying  this   text, 

the gage  estimates  are labeled  as  follows: 
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North-South    Array East-West   Array 

Gage Label Gage Label 

191 a 211 i 

181 b 221/231 j 

171 c [131] f 

111 d 241 k 

121 e 251 1 

131 f 

151 g 

161 h 

Table  7.4     Gage Nomenclature  for Homogeneity Figures 

The reader is  referred to Table 7.1  for the relative spacings.     The reason 

for providing Table 7.4  is  to  allow  for  spatial  interpretation of the 

upcoming    figures. 

The stationary wave field of September  13   1990 described in Section 7.3 is 

investigated   first.      Figures   7.32a   through   7.32c   show   representative 

frequency   ranges   below,   across,   and   above   the  peak   spectral   frequency 

(note the  different  ordinate scales).     Figure  7.32  is  essentially  an 

expansion  of Figure  7.4b  with  more  gages  and  a  wider  frequency  range. 

Observations   from   these  figures   are   somewhat  contrary   to   initial 

expectations.      The   high   frequencies,   where   the   wavelengths   are   shortest 
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and   therefore   the  relative   array   spacing   is   the  highest,   show   definite 

clustering   which   is  not   as   evident  over  the  other   frequency  ranges. 

While  there  are  some  well-defined  packets  evident  near  the peak,  on  the 

whole  this   "stationary"   wave  field  is  not  particularly  homogeneous,   at  least 

not to the degree indicated by  the stationarity of the spectra in Figure 7.10. 

The   remaining   figures   examine   the   nonstationary   wave   field 

corresponding  to  Hurricane Bob.     It  was  found  that the  clustering  of these 

packets   were   remarkably   consistent   when   categorized   into   relative 

frequency    ranges. 

Figures   7.33a   through   c   illustrate   homogeneity   during   the   build-up,   near 

the maximum,  and  after the maximum of the storm but only for 

frequencies  below   the  respective  spectral  peaks.     In   all  three  cases  the 

clustering   is   relatively   good   for   this   relatively-young   wave   field,   whereas 

the  clustering  was poor  for the  "old"   stationary  wave  field  example. 

Figures   7.34a   through   c   illustrate   homogeneity   during   the   build-up,   near 

the  maximum,   and   after   the   maximum   of  the  storm  for  frequencies   that 

straddle   the   respective   spectral   peaks.      In   general,   the   clustering   at   the 

spectral  peak is poor,  from which  it is  inferred  that there is  a large degree 

of variability  in  those  particular  packets.     Figure  7.35  details  two  clusters 

from   Figure   7.34a   that   further   illustrate   the   potential   information 

available  from   HPT.     The  arrows  indicate  the  consistent  progression   of the 
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Figure 7.35     Example Clusters  Showing  Spatial  Homogeneity 

estimated  packet  frequency  with respect to  the  North-South  (a  -  h)   and 

East-West (i  - 1)  gage positions.     Given the array configuration  and  the 

incident  direction   from   the   southwest,   these  observations  define   an   up 

shifting  frequency  trend  for both packets.     While this  level  of accuracy is 

not  always  possible,  when  it is  it provides  very useful  information  on 

packet    homogeneity. 

Finally,   Figures   7.36a  through   c   illustrate  homogeneity   during   the  build- 

up,  near the maximum,  and  after the maximum of the storm for 

frequencies   above   the  respective   spectral   peaks.      (The   frequency   range 
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for the waves after the maximum is above the second spectral peak as 

shown in Figure 7.10.)     Again,  the clustering  above the spectral  peak is 

relatively  good,  from  which  it is inferred  that there is  a large degree of 

homogeneity   in   those   particular   packets. 

7.5       Summary   of   Wave   Field   Observations 

This  Chapter  examined   two  representative  ocean   wave  fields,   one 

stationary and  one nonstationary.     A key aspect of this  study was the 

availability  of wave  records  over  a  large  spatial  domain.   Harmonic  Phase 

Tracking   analyses   provided   the   first   known   quantitative   estimates   of  the 

behavior  of waves  at  an  intermediate  time  scale  -  specifically,  the 

behavior of wave packets  in  both  space and  time. 

Some   brief  conclusions   are   presented   here: 

1. Wave  fields   generally   self-organize  into   discrete,   well-behaved 

wave  packets  that  persist  for  intervals  well  beyond  the  wave 

period. 

2. The mean  frequency  and  amplitude of these packets evolve 

slowly   over  time   (and   therefore  space). 
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3. Wave packets  are poorly organized at the spectral peak. 

4. Packets  can  demonstrate both  downshifting   and  up   shifting  of 

mean   frequency   over   time. 

5. Wave packets were observed to disappear at low frequencies 

under  circumstances  such  as  after  the storm  peak  when,  due 

to the close proximity of the storm center, all of the high 

celerity   waves   have   dissipated. 

6. Pairs  of packets  can  apparently  merge into  single  packets  if 

the  mean  frequencies   come  together.     This  behavior  is 

evident  in   many  of  the  evolution  figures. 

7. Packets  were  very organized  with  respect to  space during  the 

nonstationary   storm,   compared   to   the   poor   organization 

evident in  the stationary waves.     This  may be related  to  the 

"age"   of the wave field. 

It  was  not possible  to  make  definite  conclusions  because  of the number  of 

variables   and   different   environmental   conditions.      A   very   comprehensive 

study  would  be  required  first  to  quantify  how  wave packets  behave 

relative   to   components   with   differing   frequencies   and   collinear   and   non- 

collinear    incident    directions. 
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CHAPTER 8 

HARMONIC PHASE TRACKING:    A PERSPECTIVE 

8_JL Chapter Introduction 

The emphasis of the previous  Chapters was  to  develop  and  then  very 

deliberately   demonstrate   the   capabilities   that   Harmonic   Phase   Tracking 

(HPT)  brings to the field  of signal  processing.     There were  some  necessary 

topics,   such   as   uncertainty   and   interpretation,   that   were   deliberately 

avoided  as distractive to those HPT demonstrations.     Those topics are 

addressed   in   this   Chapter. 

The first section evaluates and contrasts HPT versus other techniques from 

a signal processing perspective. The second section discusses engineering 

applications. 
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8.2   Signal     Processing     Tssues     with     Harmonie—PJiase.—Tracking 

This  section  has  three  subsections.     The  first  subsection  addresses 

interpretation  of raw  and  averaged  HPT  estimates.     The  second  subsection 

focuses  on  random  error  issues,  while  the  third  addresses  the  linear 

algebra aspects of HPT. 

One of the reasons there is  such  a variety of signal  processing  techniques 

is  the  diversity  of     analysis  objectives  and  constraints  among  the 

applications.     No  one  technique,  including  HPT,   is  optimum  for all 

applications,  and  all  the  techniques  add  value  in  their  own  way.     In  some 

instances   this   Chapter   emphasizes   weaknesses   in   other   techniques   to 

better illustrate positive features and the potential of HPT.     This  is done 

with   a   full   understanding   and   appreciation   for   the   overall   strengths   of 

those    techniques. 

8.2.1   interpretation of   HPT   Estimates, 

This   section   begins   with   a  review   of signals,   which   forms   the  framework 

for   the   subsequent   interpretation   and   quantification   of   HPT   results. 

Authors   categorize   signals   in   a   variety   of  ways   such   as   deterministic 

versus   stochastic,   stationary   (to   various   orders)   versus   nonstationary, 

continuous   versus   discrete   spectral   content,   or  with   or   without   a   priori 

knowledge   of  particular   signal   attributes   such   as   rank   or   probability 
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distribution.      These   categorizations   are   important  because   they   greatly 

influence   the   choice  of  analysis   technique   and   how   the  numerical   results 

from   that   technique   are   properly   interpreted. 

The selection of a signal category should always be dictated by the physics 

of the application,  but in practice it is  sometimes conveniently defined  to 

justify   the   most   readily-available   analysis   technique.      Unfortunately, 

there  is   a high  degree  of subjectivity  inherent  in  either process.     For 

example,  an  ocean  engineer  simulating  a  dynamic  system  such  as  a  moored 

vessel  might want to quantify an ocean wave  signal  over a time scale on 

the order of one half to  one hour  while  an  oceanographer  might be 

interested  in  describing  the  same  waves  over the course of an entire storm 

(e.g.,   days). 

This   particular   illustration   of   ocean   waves   highlights   a   fundamental 

problem   in   signal   analysis   and   the   subsequent   mathematical   handling   of 

that problem.     First,  it is  mathematically expedient in  some cases to model 

ocean   waves   as   "an   infinite   superposition   of waves   that  are  infinitesimally 

close   together   in   frequency,   with   infinitesimal   amplitudes,   arriving   over 

a span  of compass directions infinitely  close together."     This  yields  a 

continuous,   multi-dimensional   spectrum.      At   the   other   extreme,   the 

method  of choice  for  engineering  purposes  is  to  model  one  finite  segment 

of ocean waves  as  a finite sum of orthogonal harmonics  - precisely,  a one- 

dimensional,   discrete  Fourier   Series   representation.     These  are  two 
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seemingly  incompatible  models:     continuous   versus   discrete  spectra;      and 

based   on   either   assumed  or   artificial   (falsely   periodic)   component  waves. 

Now,  consider  this   incompatibility  from  the  perspective  offered  by  HPT. 

Define the waves   Tl(t)  at a fixed position based on the usual infinite 

superposition   model,   simplified   for   one   direction   for   convenience: 

Ti(t}= fa(f)cos(27üftH-6(f))df 
Jo 8.1a,b 

= Li
aKC0S(2'tfk

t+eX) 

where   the   component   frequencies   fk   are  assumed   to  correspond  to 

physically-present   waves   which   are   not   necessarily   uniformly   distributed 

and  the ak   amplitude   includes   the   (non   uniform)   dffc.     Rearrange   the 

summation   in   terms   of  adjacent  pairs   of  components: 

a,    ,cos(2rcf,    ,t+e ,    ,) + a,  cos(2jtf   t+e   ) 
2(k-l) 2 k-l) 2(k-l) 2k 2k 2k 

S XL A k C0S(2Wf«W.lcp.t+ ^ >COS(27Cf— t+ ^k > 

8.2a,b 

where  the   infinite  upper  limit  has  been  replaced   in  the   second  equation 

with  a  finite  value by  requiring  that  the signal  be realizable  with  a  finite 

bandwidth.     Equation  8.2b  shows that a bandlimited  wave  signal  can  be 

alternatively   mathematically   interpreted   as   the   sum   of  a finite   number  of 

modulated   sinusoids   with   no   loss   of  generality. 
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Note  also  that  any  finite  number  of adjacent components  can  be grouped 

and interpreted in this same way,  with more and more generality added to 

the  periodic,   sinusoidal   envelope.     Since  the  frequencies   are 

infinitesimally  close,  the  periods  of these  envelopes  can  be  very long. 

Thus,  this  same model can be interpreted in an engineering sense to  model 

the  evolution  of wave  energy  in  the  various  frequency  bands  at any 

desired time scale - over one storm, a season, or a century. 

The  interpretation  dilemma  arises  from  the  fact  that  it  will  never be 

possible  to  know   the  true  components,  because  the  measurement  time 

interval   cannot  be  made  infinitely  long  to  allow  for  identification   of the 

"true"   infinitesimal   components.     In  that  sense,   it  may  be  inappropriate  to 

even  define  "true"  components.     Regardless,   all   subsequent   estimated 

signal  models  based  on finite  wave  records  are  approximations. 

Fortunately,   this  open-ended   time  scale  is   often  bounded   for  geophysical 

signals   (e.g.,   ocean   storm   waves,   earthquakes)   which   have   recognizable 

starts and  stops  that are used  to  define the maximum length  of a coherent 

event;     this  is  certainly  the  case  for  man-made  signals  such   as  radar. 

A  situation   where  the  interpretation  problem  is  not  as  applicable  is  when 

orthogonal  models  are used  to  quantify  the signal.     These  estimates have a 

number of well-known  drawbacks  associated  with:     effects  due  to  the 

fundamental   mapping   of  the   original   signal   into   a   periodic   approximation, 

leakage   whenever  the  frequency   of  a  physical   component  wave   does   not 
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match one of the a  priori   mathematically   convenient   orthogonal   periods 

(equal  to integer divisors of the record  length for FFTs),  and the need for 

ensemble   averaging,   typically   accomplished   by   assuming   ergodicity   and 

performing   time  rather  than   ensemble   averages.      Since  it  is   impossible 

with   these   orthogonal   techniques   to   ever   model   the  physical   components 

(because   making   the   frequency   resolution   small   necessarily   pushes   the 

limits   of  stationarity   of  a  signal),   the   question   of physical   interpretation 

of this  representation  and  hence the  dilemma were  both  often  avoided. 

But consider instead  results  from  an  HPT  analysis.     Instead  of averaging 

energy   over  finite  frequency  bands   and   then   forcing   the   average  to   a 

discrete   orthogonal   frequency   set,   HPT   more   accurately   estimates   "best" 

frequencies   within   a   given   band   (and   with   slightly   better   resolution). 

These   frequencies   are   equal   to   localized   instantaneous   frequencies   if  the 

spectrum   is   continuous,   but   correspond   to   the   signal   component 

frequencies   when   the   spectrum   is   discrete   (finite   rank   signal)   and   they 

are spaced  wider than  the resolution limit.     [Aside:  it is suspected that the 

ability  of HPT  to  find   "the  best/minimum  rank"   frequency  vector  could  be 

of  interest   regarding   the   issue   of parsimony   for  some   signal   types.] 

Therefore,   regardless   of  the   signal   spectrum,   the   HPT   frequencies   are 

associated   with   the   underlying   physical   component(s).      But   there   is   still 

an   apparent  problem   -   HPT   is   capable  of reliably   identifying   the 

underlying   components   only   when   the   segment   length   is   greater   than 

half the   modulating  period.     Since  the   modulating   period  nor  whether  an 

identified   modulation   is  only  one  part  of a  longer  modulating   cycle  are  not 
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a priori known,  the analyst cannot be sure based on one analysis of 

whether   a   HPT   component  represents   a   fundamental   signal   component  or 

an   effective   instantaneous   [beating]   component. 

As  with  other  techniques,   HPT   will   estimate  different  components  versus 

different trial  segment lengths.     But whereas  estimates based  on 

orthogonal  sets converge in  a mathematically   consistent  sense,  HPT 

estimates converge in a physically consistent sense.    This is a 

fundamentally   different   concept   that   can   be   used   to   better   understand   the 

signal.     The  connection  between   HPT   and   the  alternative  interpretation  of 

a continuous spectrum in Equation  8.2b  as a finite sum of modulated 

component  signals  can  now  be  appreciated.     Recall  the  examples  in 

Chapter 5  that demonstrate how  HPT can model  many types of signals 

including   frequency-   and   amplitude-modulated   component   signals.      The 

conclusion  is  that,  while HPT uses constant parameter sinusoids to model a 

signal,   the  signal components  are  not limited to  that  restrictive  class. 

These  trial   HPT   frequencies,   amplitudes,   and   phases   versus   segment  length 

should,   ideally  speaking,   follow   a   "converging  trend",   and   it  is   the 

examination  of this  converging  trend  that is  proposed  as  unique  to  HPT. 

Specifically,  recall  the  many  discussions  and  examples  in  the  main  text 

(particularly   Chapter   5)   and   Appendix   A   regarding   the   relationship 

between  the  instantaneous  frequency   and   the   sum   of  two   (or  more) 

closely-spaced  harmonics.     As  the  trial  HPT  segment length  is  reduced, 

distinct   adjacent   components   should   merge,   with   attributes   corresponding 

to   the   local   instantaneous   frequency.      Furthermore,   these   attributes 
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should  be   quantifiable  by  examining  the  continuity   of  the  phase   signal 

across   adjacent  segments   (or  conversely,   the  lack   of  continuity   as 

illustrated by the analysis of white noise signal in Figure 5.15b).     The fact 

that   these   HPT   estimates  have   a   consistent   "physical"   interpretation   might 

be  used  to  great  advantage because  it  potentially  provides  a  continuous 

link   for   estimates   over   all   frequency   resolutions. 

Inspection  of the phase  continuity  information  from  HPT  over  a  series  of 

estimates could be used to set an upper bound on the time interval of 

stationarity  for  a  given  component,  and  in  turn  set  a lower bound  on  the 

resolvability   of   the   "true"   components   in   the   vicinity   of  that   frequency. 

This   would   also   answer  the   question  of whether  a  spectrum  was   continuous 

or   discrete.     The  behavior  of  this   time  interval   versus  frequency  might  be 

fundamentally   different   for   a   geophysical   signal   compared   to   a   filtered 

version  of this  signal  passing  through  a  low   damped  dynamic  system  with 

multiple resonances.     This  is recommended  as  a rich  topic  for future study. 

If HPT  does  allow  for  consistent  identification  of components  over  any 

time  scale,  then  it opens  the  door for a more quantitative handling  of 

uncertainty   for   nonstationary   signals.     Even   when   a   signal   is   known   to   be 

stochastic   and   nonstationary,   when   only   one   measurement   is   available 

and   time  averaging  is   not possible  then  with   existing  practice  the  same 

signal   is   redefined   as   deterministic   for   subsequent   analyses   such   as 

wavelets,   the  Wigner  Ville  (or  similar)   distribution,  or  Short  Time  Fourier 

Transform  techniques.     In   other  words,  error  bounds   are  not  as  rigorously 
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required  for  these  signal  descriptors.     As  demonstrated  by  the  numerical 

examples in Chapters 5, 6, and 7, the plots of HPT "raw" frequencies and 

amplitudes   versus   time   quantify   how   individual   signal   components   evolve. 

It is  suggested that a low-order polynomial  could be used  to convert these 

"raw"  estimates into  "averaged"  estimates,  and  in  the process provide a 

formal  definition  for  the  averaged  estimates  with  an  associated 

regression-based  measure  of variance.     Note  that  these  functions  would  be 

valid  independent  of the  stationarity  of the  components.      This is another 

suggested   topic   for   future   research. 

8.2.2   HPT   Random    Error   Issues. 

None  of  the   numerical   examples   presented   in   the  previous   three   Chapters 

included  uncertainty   intervals  for  the  "raw"   HPT  estimates.     Before 

addressing  them  it  is  instructive  to  categorize  HPT  with  respect  to  other 

model   categories: 

1. HPT  is  a high resolution  technique.     All  of these techniques  are 

known to be not linear operators.     That makes it very difficult to 

develop   an   analytical   uncertainty   expression. 

2. As outlined in Chapter 4, the HPT basis matrix is random because it is 

a   function   of  the   unknown   coefficient   vector: 

ac, =H(c)c + n 8.3 
HPT .even 
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where  xHPT is the approximation to the even component of the 

[Fourier  transformed]   data,   H   is the least squares basis matrix based 

on   the   iterated   frequency   vector  found   from   the   coefficient  vector 

c   of in-phase  component  amplitudes,  and  n  is the noise vector.    (The 

expression for    xHPT odd  is equivalent.)    All of this has implications 

(not  pursued)   regarding   optimality  of the   solution. 

The question of bias is difficult to quantify for HPT estimates for two 

reasons.     First,  no  analytical  methodology  was  identified  because  of the 

nonlinearity   and   the  iterative  nature  of HPT;     other  high  resolution 

techniques   have   similar   problems   and   typically   require   Monte   Carlo 

simulations   to   numerically   define   the   errors.      Second,   the   whole   question 

of bias   is   intertwined  with   the  concept  of  "true"   component  values 

discussed  in  the previous  subsection.     If bias  is  somehow defined,  then  it 

seems  that the bias  of the HPT raw  frequency  vector  should be treated 

separately   since   it   is   the  most  important  factor  influencing   the 

subsequent   amplitude   and   phase  parameter   estimates   from   the  total   least 

squares   analysis.     This  treatment  should  also   include  the  averaged 

estimates   found,   for  example,   from   a  low-order  smoothed  estimate  based  on 

the   raw   evolutionary   plots. 

The reader is  reminded  that the inherent capacity of HPT to  adjust the 

frequency   vector   means   that   the   HPT  bias,   while   not   analytically 

expressed   here,   is   certainly  less  than  the  bias  from  any  orthogonal   model 
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for all signal types.    For example, bias in FFT-based spectral ordinates is 

proportional  to  both  the  local  second  derivative of the  ordinate  function 

(with   respect  to   frequency)   and   the  ratio   of  the  frequency  resolution 

divided by the bandwidth of the local spectral peak (Bendat and Piersol, 

1993).    [As a simple example, the bias in HPT raw amplitude estimates for 

the  ideal   case   of  noise-free,   constant  parameter,   discrete  harmonics   spaced 

wider  than  the  frequency  resolution  limit  is  presumed  to  be  almost 

negligible   given   the  behavior   of  the   sinc(8f) /8f function  for  the  small 

frequency   bias   5f expected from HPT.]    The same reference makes the 

argument  that  there  is  a  time  bias   in   nonstationary  spectral   estimates  that 

is proportional  to  the local  second  derivative  of the ordinate function  with 

respect to time.    Lastly, the reader is also reminded of the effect that the 

spectral  window  has  in  modifying  the  shape  (i.e.,  biasing)  of the  spectral 

ordinates. 

The variance of the raw HPT estimates is the next uncertainty topic.    For 

general   geophysical   applications   the   signal   contains   a   large   number   of 

sinusoids.     In these cases it is not possible to derive the Cramer-Rao bound 

because  the  bias   is   not  known,   although  there  are  complicated   variance 

expressions   available   for   "multiple   sinusoids"   based   on   numerical 

evaluations (Kay,   1988).     If it is assumed that the HPT frequency estimates 

are   relatively   unbiased,   and   the   frequencies   are   spaced   "much   farther 

than  1/T   apart",   then   further  simplifications   are  possible  and   the  Cramer- 

Rao bound  may be more useful. 
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A  more  comprehensive  study  of bias  and  variance  for both  raw  and 

averaged   HPT   estimates   versus   signal   characteristics   (like   signal   to   noise 

ratio,   number   of  sinusoids,   relative  frequency   spacing,   etc.)   and   segment 

length was not pursued but is needed;     the most likely approach is  Monte 

Carlo   numerical   studies. 

8.2.3   Linear    Algebra    Issues    with    HPT 

This final  short  subsection  discusses  basis, rank,  and  spaces  for HPT 

modeling. 

As   a  reference,   consider  the  linear   algebra   aspects   associated   with   the  use 

of the FFT for signal analysis (refer to Section 3.2).    It is well known that 

the  span   of  orthogonal   sinusoids   with   integer  harmonics   of  the  record 

length used  as the invariant FFT basis matrix  is sufficient to fit most real- 

world  signals   (except for  discontinuities  such  as  found  at the  ends  due to 

the assumed periodicity).     The rank of this matrix is generally N,  where N 

is  the  number  of points  in  the  data  vector.     Furthermore,   the  condition 

number  of the  (diagonal)  matrix  is  always  optimum  at   1.0. 

In contrast, the basis matrix for HPT is not predetermined but instead 

adapts during the fitting. Similar to the FFT, HPT does span almost all 

possible   signals   since   the   HPT   frequencies   can   range   continuously 
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between   0.4/(L*At)  (lower limit used in this study) and the Nyquist 

frequency  equal  to   ^ 111 Ah where L is the number of points in the HPT 

segment.    Admittedly, it does not model some signals, such as the even 

residual   signal   associated   with   a   sinusoid   with   a   linearly-varying 

amplitude as discussed in Section 5.2.3.    But the big advantage is that, in 

most cases, HPT finds the minimal rank model necessary to fit the signal, 

unlike the FFT  which  in  general  applications requires  a rank  N  model  to 

fit a length N data vector.    The in- and out-of-phase HPT basis matrices 

before the  addition  of the right hand  side data vector during  the total  least 

squares   solution  process   (refer  to   Equation  4.30)   are  generally  fully 

populated  and  have  full  rank  (i.e.,  the  sinusoids  corresponding  to  the  HPT 

frequencies  are  dependent).     The  total  least  squares  solution  is 

straightforward   when   the  right  hand   side  vector  includes   noise;     since 

that is  almost  always  the  case with  measured  geophysical  data there is 

never  a problem.     The reader is referred  to  Van Huffed  and Vandewalle 

(1991)  for  a comprehensive treatment of total  least squares  issues.     Also, 

the condition  number  of the  HPT  total   least squares  basis  matrices  are 

typically between 3 and  10, even for matrices on the order of 100 by  100. 

The  data  vector  used  for  the  previous  paragraph  was  purposely  labeled 

signal.    There is a fundamental reason for this.    An orthogonal  model like 

the FFT is numerically very efficient so it can be used to fit coefficients to 

all of the frequencies.     On the other hand, HPT  (as implemented here)  is 

not  as  efficient;     the  matrices  are fully  populated,  the  technique is 
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iterative,   and   each   iteration   requires   multiple   singular   value 

decompositions.     Thus, HPT computational  time is proportional  to the size of 

the  matrices   squared,  the  number  of iterations,  and   the  number  of time 

shifts  per  iteration.     While  the  latter factor  was  arbitrarily  fixed  for  these 

studies,  the user  can  minimize  the first two  factors  by  adjusting  the 

amount of error tolerable in the final fit.     This acts  to minimize the 

number  of components  in  the  matrices  and  reduce  the  number  of 

iterations   during   the   asymptotically-convergent   iterations.      For   example, 

each  new  HPT  component sinusoid  increases  the  size  of the basis  matrices, 

yet in  many  cases  these  sinusoids  correspond  to  low  energy noise that does 

not significantly contribute to  the overall  fit.     As  a consequence,  it can be 

prudent  for   the   analyst  to   define  HPT   solution   parameters   such   that   these 

components  are  excluded  from  the HPT fit.     While this  compromise 

between   the   computational   time   and   the   definition   of  the   signal   (versus 

remaining   noise)   is   an   admittedly   subjective   step,   in   an   engineering   sense 

it can be  readily defended.       Furthermore,  if the HPT  algorithms were 

adapted   to   only   include  components   with   significant   amplitudes,   this 

would   act   to   minimize   the   computational   time   in   engineering   applications 

where  that  was  a  crucial  factor  (discussed  in  the  next  section). 

This compromise in  turn defines the rank of the signal.     This  study  did  not 

seriously  address  the  issue  of the  signal  versus  noise  subspaces  and 

whether  they  were  orthogonal   or  not.     The  limited   number  of  inner 

products   examined   were   not   conclusive;      for   example,   signal-to-noise 
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correlation coefficients of up to 0.10  were found for some of the ocean 

wave records.     Pending future studies,  it is hypothesized that these HPT 

subspaces   are  not   strictly   orthogonal,   by   simple  recognition   that  both 

subspaces   (even  white  noise)   have  HPT  decompositions  comprised  of 

harmonics   at   arbitrary   frequencies   that   are   by   definition   correlated. 

As discussed in the previous subsection, HPT is not a linear operator.    The 

previously  demonstrated  fact that  HPT  can  identify  either  one  or  two 

sinusoids   (vi, V2)   depending   on   their  frequency   spacing  relative  to   the 

resolution   establishes  that  the  HPT  operator  (Jri)  is  not  universally  additive 

between   iterations.      Thus, 

6/^0WviW + v2(/.
+8/))]*^KW) + ^2(/e + 8/)) 8.4 

However,   HPT  is  a  linear  operator  regarding  the  forward  and  backward 

time  shift  estimates   at  each  iteration  because  the  frequency  vector  is  held 

constant. 

A  final  linear algebra topic recommended  as  worthy of study  is  to formally 

address  the issue of asymptotic convergence of the HPT process.     While this 

study   has   numerically   established   that   HPT   converges   for  varying   signal 

types   and   initial   frequency   vectors,   a   complementary   mathematical 

investigation   that   examined   convergence   (say,   by   randomly   perturbing   a 

true   frequency   vector   and   examining   the   off-diagonal   terms)   might   be 

instructive   and   lead   to   improvements   in  the   iterative  process. 
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JLi. Engineering    Issues with Harmonic Ehase. Tracking 

This   section  is  divided  into  three  subsections  focusing  on:     improvements 

to  the HPT  numerical  algorithm,  comparison between HPT  and FFT 

representations,    and    engineering    applications. 

8.3.1  Numerical Implementation of HPT 

Chapter 4  and  Appendix  C  describe  the HPT  technique  as  implemented 

here.     As  stated elsewhere in the text,  a conservative approach  was used  to 

maximize   robustness.      Improvements   to   the   general   technique   are   surely 

possible   as   demonstrated   by   the  following   suggested   topics: 

1. The   rules   regarding   when   adjacent  harmonics   should   or   must   be 

merged  were  kept  simple.     They  are  almost certainly  not optimum 

and   are   probably   responsible   for   increasing   the   number   of 

iterations   in   some  cases. 

2. Similarly,   the  rules  regarding   the  insertion   of pairs   of sinusoids   was 

kept   simple,   and   they   are   also   suspected   of increasing   the   number 

of iterations.     In  particular,  if only one of the new  amplitudes  has 

an   amplitude  larger  than  the  HPT  threshold,   then  only  it  should  be 

used   to   minimize  the  rank  of the  new  basis   matrices  (indexing  in 

the   present   coding   was   simplified   by   always   inserting   pairs). 
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3. The  total  least  squares  solutions  versus  the forward  and backward 

time   shifts   within   each   iteration   are  presently   independent.      Since 

the smallest time  shifts  are presently  only one point,  it is  suggested 

that   a  recursive   scheme  be   investigated   to  minimize   computational 

time. 

4. One of the fundamental steps within HPT is adjusting the trial 

frequencies   at   each   iteration.      The   present   implementation 

conservatively   increases   or   decreases   the   frequency   subject   to   a 

variety   of  ad-hoc   stability   constraints   that  were   developed   and 

evaluated  as problems  arose.     This  is  perhaps  the most important 

step  to  critically  examine in  a future  study because  a  more  accurate 

process   would   greatly   improve   the   convergence. 

5. Global  controls  on  the convergence  are likewise  simple.     For 

example,  if HPT  is  struggling  to  achieve the desired  accuracy in  the 

time  domain   error  by   inserting   new   sinusoids   over  many   successive 

iterations,   then   a  variety  of internal   thresholds   are  concluded  to  be 

unrealistic   and   are  increased   slightly.     In  other  cases,   the  present 

code has  been  observed  to  repeatedly  delete and  insert the same 

sinusoid  pair  (when  the  "true"   sinusoids  are  spaced just  lower  than 

the  HPT   resolution   and   the   internal   controls   act  independently); 

improved   recognition   of   this   phenomenon   and   subsequent 

adjustment  of the  controls  to   avoid  it  would  improve  convergence 

time. 
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Generally   speaking,   the   "first   generation"   HPT   implementation   used   in 

this  study  should be critically reexamined,  streamlined,  and  made  as 

consistent   as   possible. 

8.3.2   Comparison Between HPT ami EEI Representations 

Since FFT-based  spectra  are the  most commonly  used  for  engineering 

spectral   estimates,   this   section   augments   the  comparison   between   them 

and  HPT   representations  present   throughout  this   study  by   examining   four 

new   topics. 

The first  topic  is  frequency  resolution  of HPT  estimates.     The complication 

here is the definition  of the number of points used by HPT to achieve the 

stated  resolution.     On  the  surface,   HPT  clearly  has  a  smaller resolution  than 

the FFT when  the reference  is the HPT segment length.     But strictly 

speaking,   HPT   requires   forward   and   backward   time   shifts   to   identify   the 

frequency   vector   (although   the  raw   amplitudes   and  phases   for   each   shift 

are  defined  using   the  original   segment  length).     Thus,  from   an 

information   theory   perspective,   it   can   be   alternatively   concluded   that   HPT 

resolution  is  comparable  to  FFT  resolution  when  the  total  number of data 

points   are   used   as   the  reference.      Both   interpretations   are   right. 

The second topic is windowing.     On this topic there is no ambiguity:     the 

use of a window  is unnecessary in HPT.     Given  the tremendous attention 
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paid  in  the  literature  to  the properties   and  unresolved  merits  of windowed 

versus  non  windowed  FFTs,  eliminating  their  use has  a  strong  attraction. 

Windows are, of course, undefined for use with HPT because it does not 

artificially  impose  periodicity  and  the  subsequent end  effects  in  the 

signal. 

The third  topic is  the fact that the segment length for HPT  is independent 

of the periodicity for deterministic signals.     As an example,  a unit 

amplitude square wave signal  with a period of 48 points was analyzed 

using a HPT segment length of 60 points.    The HPT frequencies were 

referenced  to  a  32-point FFT,  which  is  simply  the closest  multiple-of-2 

length relative to  the 48  point period.     Thus,  the first exact harmonic 

appears at bin number of 3^/48. or 0.667 cycles per the reference FFT 

length,   with   significant   energy   only   at   additional   odd   harmonics 

corresponding to bin numbers of 0.667*[3 5 7 ...] =   2, 3.333, 4.667, 6. etc.    In 

addition,  the exact amplitudes  at those odd harmonics would be  C*/7t)/[l 3 5 

7 9 11 ...]    (Carslaw, 1930; Dean and Dalrymple, 1984).    The HPT-estimated 

versus  exact  parameters  for  this   square  wave  are  compared  below: 
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Harmonic 

Bin   Number Amplitude 

Exact HPT Exact HPT 

1 0.6667 0.6670 1.2732 1.2756 

3 2.0001 1.9996 0.4244 0.4263 

5 3.3335 3.3294 0.2546 0.2553 

7 4.6669 4.6636 0.1819 0.1909 

9 6.0003 5.9917 0.1415 0.1548 

11 7.3337 7.3320 0.1157 0.1229 

13 8.6671 8.6640 0.0979 0.1072 

Table 8.1    Exact HPT Estimated Bin Numbers and 

Amplitudes  for  a  Square Wave  Signal 

Again,   these  accuracies   were   achieved:   (1)   without  knowing   the  period   of 

the  signal,   (2)   without  applying   any  window,   and   (3)  without  averaging 

the first data point as is required for FFT analyses.     The HPT convergence 

error  threshold  was  0.5  percent for  the rms  value  of the time  domain 

error. 

This fourth  and last discussion compares the utility of the FFT and  HPT 

techniques,   where   the  orthogonality  of FFT   estimates  is   shown   to   offer 

advantages  compared  to  HPT  estimates  for  some signal  descriptors.     For 

example,   Parseval's   Theorem   relating   the   time   versus   frequency   domain 

mean   square  value  of a  signal   is  computationally   very  efficient  using  the 
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equally-spaced  FFT   ordinates.      Conversely,   the  nonorthogonality   of  the 

HPT   estimates   complicates   the   equivalent  frequency   domain   calculation. 

The mean  square  value  V2  over a finite interval is defined as: 

y2 = jV(t)dt 8.5 

The HPT representation for the signal can be written in vector form as: 

x = a«r + b»i 

= tTc 

where   vectors   r = cos(27tft) and i=sin(27Cft) based on the rank R 

frequency vector f, • denotes the inner (dot) product operator, and T is 

the transpose operator. Substitute the last equation into a vector version 

of Equation 8.5: 

-i 

[ 

V2 = I  xTx dt 

= f[tTc]T[tTc]dt 

f4 8.7 
=     cT ttT cdt 

-4 

= cT[J   ttTdt]c 

The last step is valid since c is not a function of time.    Now observe that 
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JttTdt = J[ri] .T 
1 

dt 

JrrT dt      0 
0      JiiTdt 

After   further   simplification   the   mean   square   expression   becomes 

\|/2=cT[JttTdt]c 

= aT[|rrTdt]a + bT[JiiTdt]b 

8.8 

8.9 

The  two  R-by-R  matrices  in  brackets  were  previously  defined  in  Equation 

4.30 as integral to the HPT methodology.    So, while HPT does require two 

full   matrix   multiplications   because   the   frequencies   are   not   orthogonal,   at 

least  the  matrices  would  already  be resident  from  the  HPT  analysis. 

Another   interesting   aspect   of   signal   processing   where   Fourier   Series   can 

be   more  informative   than   HPT   is   the  identification   of frequency  response 

functions.     Fitting  a  single  sinusoid  with   a  non  integer period  using 

Fourier  Series   yields  amplitudes  at  all  frequencies;     if an  excitation  and 

response  are  both  fitted,  then  cross  spectra can  be used to  estimate the 

system  operator over  a  wide  frequency  range.     Conversely,  HPT  would 

[correctly]   estimate   energy   only   at   one   discrete   frequency,   and   would 

accordingly   only   estimate   the   system   operator   at   that   one   frequency. 
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8.3.3 Engineering   Applications   of   HPT 

The real  significance of HPT is its  ability to  identify physically 

meaningful   harmonic  components  from   measured  data.      For  many   tasks 

such  as  those discussed  in  the previous section, the orthogonality of the 

Fourier  Series  offers  important and useful  information.     The objective  of 

this   section  is  to  illustrate  where  HPT  information  can  enhance 

engineering   and   scientific   knowledge   compared   to   the  use  of Fourier 

Series. 

HPT has  the potential  for advances  in  signal  extrapolation.     Figure  8.1a 

illustrates   HPT  wave  extrapolation  using  waves  near  the  peak  of Hurricane 

Bob.     This figure was previously introduced  and explained  as Figure 5.7. 

This   example  demonstrates   a  high  level  of correlation  between   the 

extrapolated  and  measured  signal.     This correlation  is  a  function  of the 

stationarity  of the  signal   components   along   with  the  starting  index  of the 

chosen  segment to be  extrapolated,  and  the  sophistication  of the  HPT 

fitting  technique.     For  example,  Figure  8.1a  extrapolates  relative  to  the 

center segment;     in other words, it is  "extrapolating"  into a section  of the 

signal   that  was  already  used  indirectly  for  the  forward  and  backward  time 

shifts  in  the  frequency  fitting.     But  this  extrapolation  was  done  using  the 

amplitudes   and  phases  fitted  only  to  the center  segment  (time  indices 

between  0   and  300  in  the Figure).     Figure  8.1b  illustrates  extrapolation  for 

the same signal but into a segment of the time series not used in the HPT fit 
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(indices  above  300 in  the  lower figure).     This  fit assumes  stationarity  only 

of the frequency vector to perform a least squares fit for new  amplitudes 

and phases relative to  the most forward  time  shifted  segment used  for the 

HPT  analysis,  then extrapolates using those parameters.     This fit is not as 

well   correlated   as  before,  which   in   this   case  reflects   nonstationarity   in 

the wave field.     There are improvements that can be made to  this simple 

process;    for example, a series of HPT raw estimates could be averaged to 

find   slowly-varying   "averaged"   behavior   of   the   frequency   vector,   which 

could  then  be  incorporated  into  the  extrapolation  model.     Second,  the 

process   could   be   made   more   computationally   attractive  by   investigating 

recursive HPT methods,  and  by  truncating  the rank of the HPT  estimates  to 

only   include   significant   components.      The   engineering   potential   of  HPT 

for  projecting   future   events,   such   as   several   cycles   of  an  incident   wave 

for  ship   dynamics,   is   a  prime   topic   for  investigation. 

HPT   also  provides   several   opportunities  to   advance  statistical   measures  of 

stationarity  for  any  signal.     For  example,   rms  error  of extrapolations  may 

serve  as  a  useful   scalar-type  measure.     The  phase  continuity  figures  used 

extensively  in   Chapter  7   may  provide  a  very  qualitative  vector  measure  of 

stationarity   in   terms   of   component   continuity.      Finally,   variations   in 

frequency   and   amplitude   evolutions   are   a   direct   vector   measure   of 

stationarity   (similar  to   "order   N"   descriptors   presently   used).      Such 

descriptors   may   provide   a   more   rigorous   framework   for   evaluating 

stationarity   compared   to   existing   statistical   and   probabilistic   descriptors. 
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By  identifying  true  signal   frequencies,  HPT  may  also  contribute  to  linear 

and  nonlinear  system  studies.     The  conceptual justification  for  this  is 

straightforward to illustrate.     For example, the response of a single 

sinusoid  passing   through   a  linear   system  must be   another  (shifted   and 

scaled)  single  sinusoid  at the same frequency.     Yet,  if the frequency is  in- 

between  Fourier  Series  harmonics,   then   a  FFT  representation  of that 

single  sinusoid  would have amplitudes  at all  frequencies  up  to  the  Nyquist. 

Passing   that   "spread"   transform   through   a   linear   system,   particularly   a 

lightly  damped   system  with  a  resonant  frequency  not  equal  to  the 

excitation  frequency,   would   alter   the  amplitudes   and  phases   such   that  the 

response would not be a single sinusoid.     Of course,  windowing  the signals 

limits  this  spread in  the transforms, but the principle is the same.     For 

example,   the  wave  pressures  at  the  FRF  array  are  transformed  then  passed 

through  a  scale  factor (filter)  to  recover the surface wave  amplitudes;     a 

HPT  analysis  of this  process  might yield  a different  surface  wave profile. 

Also,   for   nonlinear   systems,   the   frequency   information  from   HPT   might 

be used  to  better isolate Nth-order   forced   super-   or   sub-harmonics   from 

neighboring   free   components   or   noise. 

With  regards   to   identifying  true  signal   properties,   HPT  has   applications   in 

almost  every     field  of engineering  and  science.     Speech recognition  is  a 

good  candidate  for  a  HPT  application.     Other ocean  engineering 

applications   are  possible  such   as   in   sonar  signal   processing,   where  the 
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nonstationarity  of contacts  and  the  Doppler  shifts   are  both  difficult  to 

identify   with   orthogonal   techniques. 

This   study   has   emphasized   engineering   applications   using   laboratory   and 

geophysical water waves.    It was beyond the scope of this one study to 

definitively quantify the behavior of an ocean wave field.       But this study 

has tried to demonstrate that HPT provides new tools that in many cases for 

the  first  time  directly   address  phenomena  associated   with   such  fields,   such 

as: 

continuity   of  components   (wave   group   run   lengths), 

• stationarity   of  the   wave   field   (evolutionary  plots) 

downshifting    (evolutionary    plots) 

shortcrestedness    (spatial    coherence) 

• incident   wave   direction   and   wavelengths 

Other   information   from   further   studies   are   also   recommended   to   resolve 

some   intriguing   observations   from   this   preliminary   wave   study.      Figure 

8.2   shows   the  evolution  of waves  near  the  spectral  peak  for  the  stationary 

wave field used in Chapter 7 on September  13   1991.     10 minute HPT analyses 

were   used.      In   general,   the  representative  packets   that  have  had   lines 

superimposed   show   consistent   downshifting   at   rates   which   seem   large   for 

a  stationary  field.     Second,  these  packets  apparently  persist  over  very  long 

time  intervals.     And  third,  there are at least two  instances  shown  in Figure 

8.2   where  two  packets  merge  (apparent because  the  new   amplitude  is 
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relatively  large,  implying  that  it  is  a resultant of the  energy  in  the 

previous  two  packets).     Whether,  how,  or why  these packets  are  merging  is 

an   open   question. 

This Chapter on a perspective of HPT ends with a quote (Dyson,  1995); 

The great advances  in  science  usually  result from  new  tools 

rather than from new doctrines      Science flourishes best 

when  it uses freely all the tools at hand,  unconstrained by 

preconceived notions of what science  ought to  be.     Every  time 

we introduce a new tool,  it always leads to new and unexpected 

discoveries,   because  Nature's   imagination   is   richer   than   ours. 

It  is  hoped  that  Harmonic  Phase Tracking becomes  a useful   new  tool  that 

will  lead  to  many  new  discoveries. 
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APPENDIX  A 

USEFUL ALGEBRA FOR MULTIHARMONIC  SIGNALS 

One  basic  building  block  of the  new  Harmonic  Phase  Tracking  parameter 

estimation  technique  is  paired  sinusoids,  which  are  used  to  model 

multiharmonic   signals   when   the   frequencies   are   close   to   the   frequency 

resolution.     At  first glance  it  seems  unnecessary  to  review  the 

fundamental behavior of a model  as simple as paired sinusoids.     But looks 

can be deceiving.    For example, if asked to describe the sum of two 

sinusoids   with   constant   parameters,   a   large   number   of  engineers   and 

scientists  would  dismiss  it  as  a  trivial  beating behavior.     However,  closer 

algebraic   evaluation   yields   a   surprising   behavior   that   requires   more 

careful  handling.     Knowledge of this behavior  also  allows for a more 

accurate   assessment   of  real-world   signals   with   narrowband   and/or   a 

continuous   spectrum,   and   an   appreciation   of  how   techniques   such   as 

Fourier   Series   and   Harmonic  Phase  Tracking   model   such   signals. 

Understanding   beating   behavior   and   its   consequences   is   therefore   an 

important   prerequisite   for   correct   modeling   of  ocean   waves. 
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Al        General    Algebraic    Expressions    for    Two    Summed    Sinusoids. 

As stated above this is a basic building block for this technique, as well as 

the   clearest   model   for   demonstrating   the   algebra   of  multiharmonic 

signals.     Define  a  deterministic  signal  comprised  of two  sinusoids,  with 

unit   amplitudes   and   arbitrary   frequencies   and   phases: 

2 

x(t) = ^cos(2rcf.t+e.) AA 

The fact that both  amplitudes  are equal  (a! = a2=l) is  important for this first 

example.      There   are   several   alternative   algebraic   expressions   to   Equation 

A.l  that better describe the resulting signal.     It will  be useful  for most of 

the  following   expressions   to   define   a   mean   frequency   and   a   [half] 

difference     frequency: 

f =^2_±JL A.2a 
2 

f   =LJ—III A.2b 
A 2 

Equation  A.2   is   a  direct result  of the  familiar  set of trigonometric  identities 

for the sum of two unit   amplitude   sinusoids:   for  example, 

sina + sinß = 2sin  cos  -I A.2c 

Also  note  that the  difference frequency  in  Equation  A.2b  is  more 

accurately   labeled   a   "half-difference"   frequency   because   it   measures   the 
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difference   from   each   frequency   to   the   mean   frequency,   not   between   the 

two    frequencies. 

The first  equivalent  expression  to Equation  A.l   separates  x(t)  into  two 

products  based  on  in-  and  out-of-phase  components  of the  mean 

frequency: 

x(1)(t) = Ec(t|fA)cos(2JCf^ + Es(t|fA)sin(27rft^ A.3 

where   Ec and Es   are time-varying  envelopes  for the  cosine  and  sine  terms, 

respectively,  and  the  dependence  on  fA  is explicitly shown.     Equation A.3 

was   not  further  reduced  to   one   trigonometric  term  proportional   to   the 

mean  frequency  for  a  reason  to  be  explained  shortly.     The  functional  form 

of Equation A.3  as  shown  is important.     Note that the mean frequency 

trigonometric   terms   describe   the   "instantaneous"   signal   that   would   be 

most apparent upon  inspection  of the total  signal.     These terms  are  in  turn 

multiplied   by   "slowly-varying"   or   "modulating"   envelopes   E   which   are 

functions   of   time   and   the   difference   frequency. 

The  various   terms  are  now  expanded  for  completeness.     The  time-varying 

amplitude  (envelope)  for the cosine  term  is  denoted  by   Ec(t|fA) and is 

specified   by: 

Ec(t|fA) = AcCOS(27lfAt+(pc) A.4a 

while  the  similar  envelope  term  for  the  out-of-phase  sine  term   is 

Es(t|fA) = Assin(27tfAt+<ps) A.4b 
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Ac and As  are positive constants  defined by: 

Ac = y(ai sin61 + a2 sin62 f + (a2 cos02 - a1 cos8x)
2 

A s = ■^(a1cosd1 + a2 cos62 )2 + (ax sin91 - a2 sin82)
2 

A.5a 

A.5b 

The  two  amplitudes  aj and a2  are still defined as equal but are included for 

completeness,  while  the respective phases  (subject,  as  all  the phases  in 

Appendix  A  are,  to proper quadrant placement such  as  with the ATAN2 

function  in  MATLAB)  are given by: 

(p  =tan   - 
a cos8^ -a, cos8„ 

2 2 1 1 

a sin8 +a sin6„ 
112 2 

A.6a 

© =tan~ 
a sin8 -a sine, 
112 2 

a, cos6„ +a^cos8, 
1 12 2 . 

Equation  A.3  is simplified one last time to produce 

x(1)(t) = ^Ec(t|fA)
2+Es(t|fA)

2cos( 27Tf t+ tan"1 
Es(t fA> 

.Ec(t fA> 
>) 

A.6b 

A.7 

Although the behavior of the time-varying envelope term is not readily 

apparent in this formulation, it is clearly seen that it is always a positive 

(not  a  zero   mean)   function.     Note  also   the  time-varying  phase. 

Return  to  Equation  A.3   which  clearly  shows  that  both  of the  trigonometric 

functions   of  the   mean   frequency   are  modulated  by  envelopes   that  are 

relatively   slowly-varying.     However,   it  also   shows   a  second   more  subtle 

behavior,   described   below,   that   creates   tremendous   complications   in 
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modeling  and  interpreting  the  total  signal.     Recall  that  the  envelope  given 

in Equation  A.7  is  always  positive,  which  follows  convention  for 

describing   modulating   envelopes   as   non-negative.      However,   the 

component  envelopes  defined  in  Equation  A.3   are  zero-mean 

trigonometric   functions,   meaning   that   they   take   on   negative   values. 

Something   unexpected   happens   to   either   component   (product)   term   in 

Equation  A.3  when  the modulating  envelope changes  sign.     If that one 

component   is   examined   graphically   or   algebraically,   the   "instantaneous" 

component  at  the  mean  frequency  will   show   an   abrupt  sign  reversal,   in 

other words,  an instantaneous   180   degree  phase   shift  where  the  envelope 

has  a node and  the derivative of the rectified envelope is  infinite.     This 

phenomenon is illustrated in Figure A.l.     Note how the phase of the sum- 

frequency   sinusoid   and   the   effective,   beating   sinusoid   go   from   in-phase   to 

out-of-phase  across  the  node  of the  envelope. 

Now,   note  the   similar  behavior  of representative  ocean   waves   from 

Hurricane  Bob  shown  in  Figure  A.2,  confirming  that this   180  degree phase 

discontinuity  does  occur  in  real-world  signals  and  is  not simply  a 

mathematical   curiosity  using   idealized   sinusoids.      (Demonstration   of  the 

existence   of  this   phase   discontinuity   phenomenon   for  real   ocean   waves 

also  shows  that zero-crossing  methods  can be  lead  to biased  estimates.) 

This   phase   discontinuity   is   further   explored   in   subsequent   sections. 
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a. Beating Signal with Zero-Mean Envelope 

200 

b. Beating Signal & Mean-Frequency Sinusoid 

0 50 100 
Time Index 

150 200 

Figure  A.l     Illustration  of Phase  Discontinuity  in  Beating 

Sinusoids.      Figure   A. La:   instantaneous   signal   with   zero-mean 

envelope;     Figure  A.l.b:   same   signal   with   sum-frequency 

sinusoidal  signal  (-  -  - -). 
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200 

Figure A.2    Example of Phase Discontinuity (at 150 sec) in an 

Ocean Wave Signal (Prior to Hurricane Bob, Gage 131, at 1945 on 

Aug 18 1991);     = wave signal;     . . . . = constant-parameter 

sinusoid 
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Equations  A.3   and  A.7  completely  describe  the  resulting  signal  for  equal 

amplitudes  and  any values of frequency and phase.     But not all 

combinations   are   worthy   of  attention.      Consider   the  frequency   separation; 

if the two frequencies  are not close, then the signal looks  like a fast 

sinusoid riding on a slow  sinusoid.     In the complimentary limit as the two 

frequencies   come   together,   the   difference   frequency   approaches   zero   so 

the  envelope  period   tends  towards   infinity,   and  over  a  finite  interval   the 

signal   appears   as   one  sinusoid  with   an   quasi-stationary  amplitude   (except 

right  at a node).     For these situations  where the difference period  is  much 

longer   than   the  length   of  the  finite   segment  being  analyzed,   the   signal 

can   appear  to   be  a  constant  frequency   sinusoid  with   a  nonstationary 

amplitude. 

The   "simplicity"   of  the   previous   beating   signal   is   greatly   complicated 

when  the  amplitudes   are  unequal.     At  the  limiting  case  previously 

described  when  both   amplitudes   are   equal,   the  classic  beating  results,   with 

a symmetrical  envelope  that causes  a   180  degree phase shift in  the 

instantaneous   signal.     At  the  other  limit  where  one  of the  amplitudes 

becomes   negligible,   an   apparent  single   sinusoid   results.     But  for  the 

intermediate case when  one of the  amplitudes  is  a finite fraction  of the 

other,   the   signal   modulates   about   a   "mean   amplitude"   and   the  envelope 

never  approaches  a  zero  value.     From  visual  inspection  of such  an 

"intermediate"   beating   signal   one   might   conclude   that   the   sign   reversal 

phenomenon  never occurs.     But Equations   A.9  and  A. 10   (below)   shows  that 
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it  always   occurs   somewhere  for  both   the  in-phase  and   out-of-phase 

instantaneous   components,   and   at  any   arbitrary  phase   (i.e.,   time   shift) 

relative to  the other.     In  other words,  this  sign reversal  may occur when 

the envelope is at a "node", or it may occur at some other time.    As 

described   in   the   next   section   on   Instantaneous   Frequency,   this   arbitrary 

reversing  is  a serious problem  for  "real  world"  signals. 

This  all  leads  to  two  additional  alternative  algebraic expressions  for two 

beating   sinusoids   with   arbitrary   amplitudes   that   are   generally   applicable 

and  analytically  informative.     The  first  starts  with  definitions  of a mean 

amplitude   and   a   difference   amplitude: 

—    a, +a-, 
As-1 2- A.8a 

a —a 
A      =U 2| Agb 

A 2 

such that  a!=A + AA and a2 = A-AA.   Similarly,  define  mean  and 

difference    phase   functions: 

8 = ^ 2. A.8c 

eA- 
ei-ea A.8d 

2 

Then   algebra   yields   a  second  representation   for  this  paired   signal: 

x(2) (t) = [ 2Ä cos(27tf "t + 6A)] cos(27rf+t + 6) + 

[2 AA sin(2rcf "t + 6A )]sin(27tf+1 + 6) 
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where   the  brackets   indicate   modulating   envelope   functions.      Also   note 

that Equation  A.2 does not apply for the  "sum"  and  "difference" 

frequencies,   so   new   variables   f* and f   are introduced  (f*  is discussed in 

the next section).    Equation A.9 is seen to be a sum of two beating sinusoids, 

each  constructed  from  sinusoids  with  equal   amplitudes.     Each  product  term 

shows   the   zero-mean   envelopes  responsible  for   the  abrupt   sign   changes 

in the individual components.    But since the total signal is the sum of the 

two terms,  the instantaneous  signal  never shows  a full   180  degree phase 

shift.    Last, note how easily Equation A.9 simplifies to a single modulating 

envelope   and   instantaneous   sinusoid   when   the   two   amplitudes   are   equal 

and AA=0. 

The   common   theme   to   these   algebraic   manipulations   has   been   to   convert 

the original  sum of two sinusoids with  unequal  amplitudes to a form with 

equal  amplitudes.     This can  also  be accomplished directly by choosing 

either   amplitude   as   a   "reference"   amplitude,   and   decomposing   the   other 

amplitude  into  two  parts.     This  yields   a  final   alternative  form: 

x{3)(t) = ai[cos(27Cfit+ei) + cos(2TCf2t+e2)] + (a2 -ajcos^n^t+ej   A.10 

where   ai   was  arbitrarily  chosen  as  the  reference  amplitude.     Again,  the 

first  term  will  exhibit  a phase  discontinuity  at  some  time,  but  the  effective 

phase  discontinuity   in  the  total   signal   will  be  lessened   (and  harder  to 

observe)   by   the  presence  of  the   second   [continuous]   sinusoid. 
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A.JL  Tnstantaneous Frequency. 

The  f4"  sum frequency in Equation A.9 is a function of the two amplitudes 

and is often called the Instantaneous Frequency (IF).    The IF is common in 

the communications  field.     Its basis  can be understood by  consider the 

problem   of  determining   the  frequency  of a  single  sinusoidal   signal   with 

constant   but   unknown   parameters.      The   time-varying   trigonometric 

argument is  given  by   (27Cft+<|>).     If this  trigonometric  argument  was 

somehow   analytically  or  numerically  known   over   a  finite   segment  of  time, 

then one way to estimate the frequency would be to take the derivative of 

this  argument  with  respect  to  time: 

—[(2nft+4>)] = 2rcf A. 11 
dt 

from    which 

The objective then is to find a way to estimate the vector argument of the 

sinusoid.     The Hubert Transform (H) is utilized to do this.    It can be shown 

that  for  positive   frequencies   the   Hilbert  Transform  of  a   monochromatic 

signal   is   -j*sign(f)   times   the  Fourier  Transform   where  j=sqrt(-l)   (Bendat 

and Piersol,  1986).    Thus, it is identically a -90 degree phase shift of the 

signal, e,g., it shifts a cosine to a sine function and visa versa.    This solves 

the  problem  as  follows;     define  a  Hilbert-transformed  signal   as: 

x(t) = #{x(t)} A. 13 
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Because  of  the  phase  shift  property,   the  needed   argument  function   is 

readily  calculated  to  be: 

a(t) = (27ift+(|>) = tan"1J-^l A. 14 

and  the  instantaneous  frequency  follows  directly from  Equation  A. 12.     Of 

course   for   a   monochromatic   signal   this   numerically-estimated   frequency 

should   be   constant. 

Since  the  derivative  of Equation  A. 11   can be  approximated  for a discretely 

sampled   signal   using   numerical   techniques,   these   expressions   are   valid   at 

each  time  step  and  they  can therefore be used  to  find  a time-varying  as 

well   as   a   constant   frequency;      hence  the  name   "instantaneous   frequency". 

It  is  mentioned  here that a related  use for the complex  "analytic  signal", 

defined as   x(t)+ jx(t), is that it can be used to estimate the envelope of a 

signal  (e.g., for a constant sinusoid,   cos2a + [#{coscx}]2 = cos2a + sin2a = l 

as    required). 

The  problem   is   that  the   concept  of  an   instantaneous   frequency   is 

undefined   when   more   than   one   sinusoid   and/or   nonstationary   amplitudes 

are present  (Boashash,   1992).     However,  the  lure is  that,  since the  analytic 

signal   is  admittedly  useful   even   in  these  cases  for  estimating  the  envelope, 

it   "should"   be   equally   useful   for   finding   the   instantaneous   frequency. 

This  is  not the case however. 
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To  better  understand   this,   consider  application  of the  analytic   signal   and 

instantaneous  frequency  for  two   [beating]   sinusoids.     The  first  obvious 

reason  it has  trouble  is  in  handling  the abrupt   180  degree phase 

discontinuity   already   discussed;      a   numerically   calculated   instantaneous 

phase  will  detect  this  discontinuity  in  the  derivative  and  return 

essentially   a  "finite  delta  function"   for  the  instantaneous   frequency   at 

that point.     If not  anticipated  and  handled  correctly,  such  an  extreme 

value  will   greatly  skew   any   short-term,  unweighted   smoothing  of  the  IF 

that is routinely done to reduce the effects of noise  (additive noise will not 

be  formally  incorporated  into  this  discussion   as  not  pertinent  to  the  main 

point). 

Secondly,   an   analytical   expression   for   the   instantaneous   frequency   of  an 

arbitrary   rank  summation   of  sinusoids   has   been   derived   (see  Boashash, 

1992  for  further  information  regarding  this  review  of the IF).     The 

simplified   form for   constant  parameters is 

 3,j=l[i*j]  IF(t) = -^ h2±l*ll  A.15a 

i=l 1,3=1 [^j] 

where 

q. .(t) = a.a .cosj |27tf.t-l-e.] + [27rf.t+e. 

Equation   A. 15a   shows   two   intriguing   features: 

A.15b 
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• IF  is  a  nonlinear function  of amplitude,  and 

• IF is  a time-dependent function due to the cross term qjj 

Both of these are troublesome.    But why is IF a time dependent function 

when  Equation  A.9  seems  to  show  the  "instantaneous"   signal  has  a constant 

value?     (Note,  however,  that Equation  A.7  confirms  the  IF time  dependence 

via  the  time-dependent phase.)     The  main  reason  is  that the  instantaneous 

frequency   is  also   necessarily  a  function   of  the  envelope  (i.e.,   varying 

amplitude)  of the   signal,  because  variations  in  the  envelope  stretch  the 

signal   and   in   essence   stretch   the   apparent  phase.      Unfortunately,   there   is 

no   analytical   expression   for   the   IF  when   the   component   amplitudes   or 

frequencies    are    nonstationary. 

Consider  two   additional   points.     First,   the   "average  frequency"   over  a finite 

time  segment is formally defined  as  the  average of the IF weighted  by the 

corresponding   envelope-squared   (this   keeps   the   analog   IF  finite   at   the 

envelope   nodes,   but   not   necessarily   a   numerically-estimated   discrete   IF). 

So,  the  phase  discontinuity  can  still  bias  an  estimate of the  "effective, 

mean"   frequency   over   a  finite   segment  of the   signal.      Secondly,   consider 

the   concept   of  the   time   dependent   "frequency   bandwidth"   relative   to   the 

IF;     this   function   quantifies   the   spread   of  frequencies   contributing   to   the 

IF at any  given  time  (i.e.,  it is  zero for a  single constant frequency 

sinusoidal   signal).      The  analytical   expression   for  this  bandwidth   is   a 

function  of the  first   and   second   time  derivatives   of the  (zero  mean) 

envelope   -   reinforcing   how   the   envelope   affects   the   "local"   frequency. 
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All   of  these  phenomena,   particularly   the  large   effect  that  the  changing 

amplitude   has   on   the   instantaneous   frequency,   are   readily   apparent   in 

numerical   studies.     Figure   A.3   illustrates   the   instantaneous   frequency   for 

two  signals  comprised  of two  constant-parameter  sinusoids.     The original 

signal with two unit amplitudes  is shown in the upper figure.     The middle 

figure   shows   the   two   component   frequencies   and   the   numerically-derived 

instantaneous  frequency;      the  negative  delta  functions   are  caused  by  the 

180 phase discontinuity in the original  signal.     The lower figure shows the 

constant   and   instantaneous   frequencies   when   a2=
al/2   (signal   not  shown). 

As  previously  discussed,   this  softens  the  effect  of the  phase  discontinuity. 

But  equally as  important,  this  lower figure  shows  how  far the 

instantaneous   frequency   can   vary   away   from   the   two   component 

frequencies   (dashed   lines). 

One  additional   figure   is  presented   to   reinforce  this   latter  observation 

about   the   variability   and   undependability   of   the   instantaneous   frequency. 

Figure A.4 is identical to Figure A.3 except that a third unit amplitude 

component  sinusoid has been  added  to the two  cosinusoids used for Figure 

A.3.     Both  the middle and lower subfigures show  similar behavior to Figure 

A.3.     Note  that  the  equal   amplitudes  result  in  an  instantaneous  frequency 

for  the  middle  subfigure  which   is  symmetrical   about  the  three  true 

frequencies;   this   is   expected   because   the   instantaneous   frequency   is 

symmetrically  weighted  by   the  amplitudes.     In  the  lower  subfigure, 

however,   the  unequal   amplitudes   expectedly  biased   the   estimate   towards 
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Figure  A.3     Illustration  of Instantaneous  Frequency  for  Two 

Sinusoids;     a:  original   signal  with  equal  amplitudes;     b:   constant 

(12.2/J28 and 9-7^/l28^     dashed  line)  and  instantaneous 

frequency   (solid  line)   when   a2=aj;    c: constant and 

instantaneous   frequency   when   a2=al/2- 
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a. Three Component Beating Signal 

-50 0 50 
b. Constant and Instantaneous Frequencies; a1=a2=a3 
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c. Constant and Instantaneous Frequencies; a2=a3=a1/3 
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Figure  A.4     Illustration   of  Instantaneous  Frequency   for  Three 

Sinusoids;     a:  original  signal  with equal  amplitudes;     b:  constant 

(14.314/J28, 12.2/j2g and ^-^5/i28> dashed lines) and 

instantaneous   frequency   (solid   line)   when   a2=a3=a2;    c: constant 

and     instantaneous   frequency  when   a2=a3 = al/3. 
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the   largest   amplitude   component   (fj), but that estimate is in fact not 

symmetrical   about   that   frequency. 

An additional useful  observation can be made from Figure A.4.    By 

comparing  the  signal  in  the upper subfigure to  the  IF in  the  middle 

subfigure,  the physical  concept of the  IF  can be  clearly  seen.     Inspection 

of the signal  over time spans of approximately one cycle does reveal 

variations  in  the  apparent  frequency;     for example,  the period  appears  to 

increase for the half cycles just prior to times 0 and 50 and that is reflected 

in   the  decrease  in   the  instantaneous   frequency  over  the  same   time   short 

interval.      Further   discussion   on   three-component   signals   is   given   in 

Section   A.3.3. 

These   illustrations   (and   many   additional   arguments   not   presented   here) 

confirm   that   the   concept   of   "instantaneous   frequency",   which   is   popular 

in  the  literature  in  a  great  many  applications,  is  not practically   useful for 

interpreting    multicomponent    signals.     The  half cycle  (or fraction  thereof) 

phase   discontinuity   also   introduces   errors   into   simple   frequency 

estimation   techniques   like   counting   zero   crossings,   which   has   been 

proven   to  be   a  sub   optimal   and  biased   frequency  estimator  for  signals   with 

a nonstationary  IF  (Boashash,   1992).     However,  while direct use of the 

instantaneous   frequency   is   not   recommended,   understanding   the   concept 

of   instantaneous   frequency   is   nonetheless   critical   because   it   does   greatly 

improve   interpretation   of  the   results   from   any   modeling   -   especially   the 

new   Harmonic   Phase   Tracking   technique. 
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A.3       Further    Algebraic    Studies. 

Some  limited  additional  topics  are listed  that were researched but 

ultimately were not used in the course of this study. 

A.3.1.        Amplitude    Normalization. 

Some limited  investigations were done in this  study to  divide the 

instantaneous   signal   by   the   envelope   and   thereby   minimize   amplitude 

variation  effects  on phase estimation,  but they  were not completed.     For  a 

beating   signal   this   approach   does  result  in   an   essentially   constant 

amplitude  sinusoid.     And  when  the  two  component amplitudes  are  similar 

in   magnitude,   this   resulting   "mean   frequency"   sinusoid   does   clearly   show 

the  180 degree phase shift at the nodes.     However, in more general  cases 

where one  amplitude dominates,  the  180  degree phase shift in one of the 

components  in  Equation  A.3   is  summed  with  the  complimentary  term  in 

that  equation  that  is  not  experiencing   a  phase  shift,   and  the  "effective" 

phase  shift of the  instantaneous  signal  can  be  any  value between  0  and 

180 degrees.     This  variability  in  the phase is  difficult to  confidently detect 

numerically  from   the  total   signal,   so   the  approach  was   abandoned. 
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A.3.2.        Quadratic    Solution. 

This  was   an  interesting   exercise  that  originated  from  Equation   A.9,   which 

is   repeated   here   for   convenience: 

x(t) = [ 2Ä cos(2rcf"t+ 6~)]cos(2 rcf^t+ 0+) + 
(A.9) 

[2 A A sin(2rcF t+ 6~)]sin(2 rcf* t+ 6+) 

The  objective  of this  exercise  was  to  use  numerical   approximations 

available from  a  measured  function  to  find  some of the  parameters  in 

Equation   A.9. 

Assume  that  the  interval  of the  signal  under  study   is   long  enough   to 

include  the  maximum  and  minimum  of the  envelope  (or,  multiple  values  if 

noise  is  present  so  that  some  averaging  can  be performed).     Then  observe 

that  the  amplitudes  in  Equation  A.8   can  be  numerically  approximated   as: 

—    mean(max(envelope)) .  ,, 
A = - *—^- A.16a 

2 
and 

mean(min(envelope)) .  ,., 
AA = i *—^ A.16b 

A 2 

where the  mean  is  intended  over multiple cycles of the envelope.     Next, 

use  the  Hubert  Transform  to  calculate  the   analytical   signal   and   then  the 

squared   envelope   E^(t)  of the signal: 

E2(t) = x2(t) + #{x(t)}2 A. 17 
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Calculate  the  analytical   squared   envelope   defined  by   the  bracketed   terms 

in Equation  A.9: 

E' 
!(t) = (2A)2|cos2ß(t) + fAA/l sin2ß(t) 

—\2 
-(21) l-sin2ß(t) 1-1 AA

/ 

A. 18 

where    ß(t) = 27tf t+6  .     Equate  these  numerical   and  analytical   squared 

envelopes  and  solve for the sinß(t)   term: 

sinß(t)| = 

1    E2_(t) 

(2A)2 
A.19 

H* 
This   result  is   a   [rectified]   function   of  the  envelope  frequency   sinusoid 

only versus time, so it can be used to find an approximation to the 

difference   frequency   (say,   using   the   Instantaneous   Frequency   approach, 

and   recognize   that   rectifying   doubled   the   true   difference   frequency). 

Use   this   estimated   difference   frequency   and   the   observed   envelope  phase 

of e~   to  then  estimate  the  two  bracketed  envelope  components  from 

Equation   A. 9: 

and 

Ec(t) = 2Acosß(t) 

E (t) = 2A~sinß(t) 

A.20a 

A.20b 
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A.21 

Define  the   argument  proportional   to   the   sum   frequency   as 

a(t) = 2TTf+t+e.     Then rearrange Equation  A.9  and  square: 

[x(t)-Ec(t)cosa(t)]2 =[Es(t}sina(t)]2 

x2(t^-2x(t)Ec(t^cosa(t) + Ec
2(t)cos2a(r^ = Es

2(^sin2a(t) 

E2(t) + E2(t)]cos2a(t)-2x(t)Ec(t)cosa(t) + [x2(t)-E2(r^]=0 

E2 (t)cos2 a(t) - 2x(t)Ec(t)cosa(t} + [x2 (t) - E2 (t)] = 0 

The final line of Equation A.21  is seen to be a quadratic equation in cosa(t), 

which  means  it  can  be  solved  for  directly   (without  rectification)   at  each 

time  step.     As  previously  discussed,  a  technique  such  as  Instantaneous 

Frequency   would   be  used   to   find   the  mean  frequency  from   this  estimated 

cosa(t)  function.     This  technique  did  work  well  for paired beating  signals, 

although  its  validity  when  noise or  a third  sinusoid  was  present was  not 

explored.      This   approach  for  estimating   the  difference  and   mean 

frequencies   (and   hence   the   two   component   frequencies)   was   not   adopted 

for   the   final   implementation   of  the   new   modeling   technique. 

A.3.3       More   than    Two   Sinusoids. 

What happens  if a  third  (or  more)  sinusoidal  component  is  present  (as  in 

Figure   A.4)? 

Since  the  main   thrust  of  this   investigation  is  parameter  estimation  of real 

world signals,  it  must be  expected  that more than  two components  will 
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regularly  occur.     Chapter  4  explains  how  the  notch  filtering  properties  of 

the Fourier Series are used to make the initial estimate of the Harmonic 

Phase  Tracking   components  present  in   a  multiharmonic  signal.     There  is 

no guarantee that there will be  1  or at most 2 component sinusoids within 

the bandwidth  of all  the Fourier Series  frequency bins;     in  addition,  there 

is  inevitably  a  small  amount  of leakage  of energy  from  other  components 

at  neighboring   frequencies.     Therefore,   it  is   more  reasonable  to   assume 

that all  of the  signals will  always have more than two  components. 

Presenting   various   algebraic   expressions   for   three   or   more   sinusoids   is 

not instructive.     If the objective of such  algebra is to show  a functional 

form based on  a single cosine and sine term with envelopes as in Equation 

A.3, then each envelope term would be seen  to consist of 6 components 

proportional   to   three   difference   frequencies   (If2-fil, If"3-f21» If3~f11)- 

Practically  speaking,  the  visual  effect  of this  third  sinusoid  is  to 

superimpose   a   second   slowly-varying   oscillation   on   the   original   slowly- 

varying   envelope,   with   an   underlying   "instantaneous"   signal   still 

proportional   to   some   time-dependent   sum   frequency   value. 

So  generally,  if the assumed model consists of two sinusoids,  then the best- 

fit to a 3 sinusoid signal will return biased answers as to those first two 

frequencies.     The  assumption  made  in  the  development  of this  technique  is 

that the amplitude of the third sinusoid  is  small  compared  to the other two, 

so that the bias is not large. 
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APPENDIX B 

NUMERICAL STUDY OF ESTIMATED PHASE 

FOR MONOCHROMATIC SIGNAL 

This  Appendix further explores  the claim  made  in  Section 4.2  that the 

estimated  phase used  in  Harmonic  Phase  Tracking  (HPT)  is  unbiased  when 

modeling  a single sinusoidal  signal.     This finding was based in part on the 

proposed   relationship   presented   in   Equation   4.16   which   is   expanded   and 

rearranged    slightly    here: 

e 

>.% 

1^2itfA5"l"^2rcfX^ 

(1+«W 
U--W 

l^27tfAS      ^2ÄfX^) 

B.la?b,c 

A question mark has been added to Equation B.lb because that is the key 

step  which  is  evaluated  in  this  Appendix. 

Note that Equation B.l.c is based on Equation 4.15 for the expected values of 

the   in-   and   out-of-phase  coefficients,   repeated   here   as: 
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a 
a 

b 
b 

2«fA4 2tcfs4 

B.2a,b 

A numerical study was done in MATLAB (MATLAB,  1989) to investigate the 

behavior  of  these  three  expressions  for  various  values  of  the  three 

parameters   that   control   them:   the   true   frequency,   the   difference   between 

the  true  and   estimated  frequencies,   and   the  integration  interval.      The 

values  selected  for  the  study  were  arbitrarily  chosen  simply  to  span  a 

range   of   representative   values. 

Table B.l   summarizes the  8/8   findings   by   numerically   examining   the 

bracketed term in Equation B.ld.     Ideally,  all entries would be  1.0 to 

confirm  that  the  expression  was  unbiased   and  could  be  confidently  used  in 

HPT to iteratively adjust the frequencies.    The rows in Table B.l  are a 

sampling   of  representative   periods   defined   as   follows: 

arbitrarily choose bin numbers of 2,10, 18, 26, and 34 relative to a 

128-pt FFT (Nyquist Bin 64) to approximate the span of a wideband 

signal;   and 

•     assume  a unit time step. 

This  bin  number  set  then  corresponds  to  periods between   1.88  to   32 

seconds.     The  columns  in Table  B.l   define  the  fractional  difference 
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between the [unknown] true and estimated bin number for the chosen set; 

assuming that the estimate is reasonably close to the true value resulted in 

a selected range between -0.5 and 0.5. The integration interval differs for 

each  subtable  and  ranges  from   ±20 to ±500  points. 

As seen from Table Bl, this phase ratio is reasonably close to  1.0 for most 

cases.     This generally confirms  the use of Equation B.ld for adjusting 

frequencies.     However,  it must be  recognized  that  the  simple ratio  function 

of Equation B.l.c is not strictly correct because:  (1)  it  "rectifies"  the third 

and  fourth  quadrants  into  the  first  and   second,  but  most  importantly,   (2)   it 

may   be   ill-conditioned   when   either   denominator   term   or   conversely   when 

both  estimated  amplitudes  in  Equation  B.2  approach  zero. 

So  the  next  step  was  to  numerically  evaluate both  coefficient  expressions 

in Equation B2.     Table B.2 summarizes the findings for   a/a   in  Equation 

B2.a;    Table B.3 summarizes the findings for b/b  in Equation B2.b. 

Inspection   shows   that  these   expressions   obviously   do   approach   zero   under 

certain  conditions.     This  prompted  a  study  to  identify  which  variable 

combinations   of   frequencies   and   integration   lengths   allow   the   integrals   to 

go to zero.    For example, the estimate for  ä in Equation B.2a goes to zero 

when the numerator goes to zero.     It can be shown that this will occur 

whenever: 
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(f + f)sin(27t(f - f)£) + (f - f)sin(27t(f + f) $) = 0 

(f)sin(2Jcf^)cos(27tf§)-(f)cos(2jcf^)sin(2nf^) = 0 
B.3 

tan(2rcf£)- tan(2?tf £) = 0 

If the  three  variables  satisfy  this  last equation  then   a will be zero and 

correspondingly   the   coefficient   estimate   will   be   ill-conditioned. 

By  inspection,  the  numerator  of Equation  B.2b  goes  to  zero  whenever 

S        -S        =0 

tan(27i^)- * tan(27tf£) = 0 

These  two   latter  expressions  define  the  parameter  sets   which  lead   to  ill- 

conditioned   estimates   for   their  respective  coefficients.      But  Equation  B.4 

shows   a  second   source  of ill-conditioning.     Note  that  the  denominator  in 

Equation  B.2a  was  not  a  concern   since  min(5   - )>-0.22   so  the  denominator 

is always greater than 0.    But there does appear to be a problem with the 

denominator  of Equation  B.2b,  which  goes  to  zero  as  the frequency 

difference   approaches   zero   and   the   sine   function   asymptotically 

approaches   1.0.       This  makes  no  physical  sense,  however,  since  the overall 

ratio  in  Equation  B.2b  must  asymptotically  approach   1.0  when  the 

estimated   frequency   approaches   the   true   frequency   and   the   amplitudes 

match.      This   observation   implies   that   the   proper   interpretation   of  the 
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bracketed term in Equation B.l  is that it is the product of two inner ratios 

for  ä and b  as given in Equation B.2,  and the behavior of each inner ratio 

must be  independently evaluated  as terms  approach  zero.     In  other words, 

Equation B.lc is correct.    Thus, take the limit of Equation B2.b as the 

estimated   and  true  frequencies   agree  and  therefore  f^ goes to zero and fi 

goes to 2f: 

lim   I -^   1 

KhJ 

lim 
fA-»o 

r s     -s     ^ 
1-5 

1-5 
47C% 

1-5 4 7c^y 

4Jt£ 

= 1.0 

And  similarly  for Equation  B2.a: 

lim   (Q\       lim 

.a; 

( 
27TfA^ 2ttf£E, 

A 

1 + 5 

1 + 5 
4 tt% 

1 + 5  Ä 

4TC£ ) 

= 1.0 

B.5a 

B.5b 

What can be concluded from all of these discussions? Equations B.5 show 

that both coefficient ratios will asymptotically be 1.0 when the estimated 

frequency approaches the true frequency (as expected). Therefore, the 

only situation where the phase ratio would be expected to diverge 

appreciably from 1.0 is when the ä or b numerator integral summations 

approach zero as shown by the parameter relationships in Equations B.3 

and B.4. 
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These  analytical   arguments  can  be  directly  and  more simply  checked  by 

comparing coefficient ratios from Tables B.2 and B.3 to Table B.l.    For 

example,  take the upper  left  entry  in  each  subtable c for  common 

integration   length    160: 

(b/b)=0.470 from Table B.3.c, ; 

( ä / a)=0.646 from Table B.2.c, ;   and 

(§/e)=0.728 from Table B.l.c. 

Using these values, a direct check of Equation B.l.c shows that ^o 646 = 

0.728,  which  is  not  surprising  since  the phase expression  is  the  quotient  of 

the  two   coefficient  expressions.     But  the  analytical   investigation  was 

necessary,   if for  no   other  reason   than  to   identify   the   "irregular" 

frequencies   where   ill-conditioning   is   possible. 

In  summary,  these  evaluations  have  confirmed  the use  of Equation  B.l.c  as 

the  basis   within   Harmonic  Phase  Tracking   to   adjust  frequencies,   with  the 

knowledge   that   at   some   isolated   parameter   combinations   the   adjustments 

may  be  ill-conditioned.     Parameter  combinations   are  not   checked   in   the 

present   numerical   implementation   of   this   new   technique   (which   is 

described  in  later sections of Chapter 4 and  Appendix C) as not worth the 

computational   expense.      Experience   shows   that   this   ill-conditioning 

phenomenon   does   not   significantly   affect   the   final   results,   although   it 

may   explain   why   some   component   frequencies   occasionally   oscillate 

during   the   iterations   instead   of  asymptotically   heading   towards   the   final 

value. 
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Table Bl.    Bias Errors in the Phase Estimates 

B.l.a.     Results  for  integration  interval=40 

Period 

(sec) 

Estimated  - Exact Bin Difference 

(w.r.t   128-pt   segment) 

-0.45 -0.25 -0.10 0 0.10 0.25 0.45 

32 1.303 1.121 1.036 1.0 0.981 0.981 1.034 

6.4 0.954 0.977 0.992 1.0 1.005 1.008 1.000 

3.55 1.026 1.013 1.004 1.0 0.997 0.995 0.999 

2.46 0.982 0.991 0.997 1.0 1.002 1.003 1.001 

1.88 1.014 1.007 1.002 1.0 0.998 0.997 1.000 

B.l.b.     Results  for  integration  interval=80 

Period 

(sec) 

Estimated  - 

(w.r.t 

Exact Bin Difference 

128-pt   segment) 

-0.45 -0.25 -0.10 0 0.10 0.25 0.45 

32 0.761 0.915 0.990 1.0 0.979 0.909 0.813 

6.4 0.953 0.982 0.997 1.0 0.997 0.982 0.955 

3.55 0.974 0.990 0.998 1.0 0.998 0.990 0.975 

2.46 0.982 0.993 0.999 1.0 0.999 0.993 0.982 

1.88 0.986 0.995 0.999 1.0 0.999 0.995 0.986 
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B.l.c.     Results  for  integration  interval=160 

Period 

(sec) 

Estimated - 

(w.r.t 

Exact Bin Difference 

128-pt   segment) 

-0.45 -0.25 -0.10 0 0.10 0.25 0.45 

32 0.728 1.001 1.045 1.0 0.964 1.013 1.275 

6.4 0.945 0.999 1.008 1.0 0.992 1.002 1.055 

3.55 0.970 0.999 1.004 1.0 0.996 1.001 1.030 

2.46 0.979 0.999 1.003 1.0 0.997 1.001 1.021 

1.88 0.984 1.000 1.002 1.0 0.998 1.000 1.016 

B.l.d.     Results   for   integration   interval=300 

Period 

(sec) 

Estimated - Exact Bin  Difference 

(w.r.t   128-pt   segment) 

-0.45 -0.25 -0.10 0 0.10 0.25 0.45 

32 4.080 0.962 1.055 1.0 1.039 1.078 3.529 

6.4 0.874 0.969 1.000 1.0 0.993 1.028 0.946 

3.55 0.887 1.004 0.994 1.0 0.996 0.991 0.875 

2.46 1.052 1.012 1.000 1.0 1.003 0.989 1.022 

1.88 1.065 0.998 1.003 1.0 1.002 1.005 1.074 

370 



B.l.e.     Results  for  integration  interval=500 

Period 

(sec) 

Estimated  - Exact Bin Difference 

(w.r.t   128-pt   segment) 

-0.45 -0.25 -0.10 0 0.10 0.25 0.45 

32 0.877 0.101 1.058 1.0 1.035 0.132 0.749 

6.4 1.072 1.173 1.001 1.0 0.992 1.113 0.970 

3.55 1.013 1.190 0.994 1.0 0.996 1.201 1.036 

2.46 0.974 0.941 1.000 1.0 1.003 0.959 1.012 

1.88 0.993 0.912 1.003 1.0 1.002 0.908 0.981 

B.l.f.   Results for integration interval=1000 

Period 

(sec) 

Estimated  - Exact Bin Difference 

(w.r.t   128-pt   segment) 

-0.45 -0.25 -0.10 0 0.10 0.25 0.45 

32 0.842 0.456 0.906 1.0 1.003 0.609 1.161 

6.4 1.032 1.153 1.019 1.0 0.999 1.108 0.968 

3.55 0.983 0.924 0.989 1.0 1.000 0.945 1.018 

2.46 1.012 1.056 1.007 1.0 1.000 1.040 0.987 

1.88 0.991 0.959 0.994 1.0 1.000 0.970 1.010 
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Table B2.    Bias Errors in the Estimated 

In-Phase    Coefficients 

B.2.a.     Results  for  integration  interval=40 

Period 

(sec) 

Estimated - Exact Bin Difference 

(w.r.t   128-pt   segment) 

-0.45 -0.25 -0.10 0 0.10 0.25 0.45 

32 0.844 0.929 0.978 1.0 1.010 1.001 0.948 

6.4 0.991 1.001 1.002 1.0 0.996 0.986 0.968 

3.55 0.955 0.984 0.996 1.0 1.000 0.992 0.968 

2.46 0.976 0.994 1.000 1.0 0.997 0.988 0.968 

1.88 0.961 0.987 0.997 1.0 0.999 0.991 0.968 

B.2.b.     Results   for  integration   interval=80 

Period 

(sec) 

Estimated  -  Exact Bin  Difference 

(w.r.t   128-pt   segment) 

-0.45 -0.25 -0.10 0 0.10 0.25 0.45 

32 0.998 0.999 0.998 1.0 1.003 1.003 0.967 

6.4 0.896 0.969 0.995 1.0 0.995 0.969 0.895 

3.55 0.886 0.965 0.994 1.0 0.994 0.965 0.886 

2.46 0.883 0.964 0.994 1.0 0.994 0.964 0.883 

1.88 0.881 0.963 0.994 1.0 0.994 0.963 0.881 
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B.2.C.     Results  for  integration  interval=160 

Period 

(sec) 

Estimated - 

(w.r.t 

Exact Bin Difference 

128-pt   segment) 

-0.45 -0.25 -0.10 0 0.10 0.25 0.45 

32 0.646 0.846 0.954 1.0 0.993 0.841 0.489 

6.4 0.571 0.847 0.971 1.0 0.978 0.846 0.540 

3.55 0.564 0.847 0.972 1.0 0.977 0.847 0.547 

2.46 0.561 0.847 0.973 1.0 0.976 0.847 0.549 

1.88 0.560 0.847 0.973 1.0 0.976 0.847 0.551 

B.2.d.     Results  for  integration  interval=300 

Period 

(sec) 

Estimated  - 

(w.r.t 

Exact Bin Difference 

128-pt   segment) 

-0.45 -0.25 -0.10 0 0.10 0.25 0.45 

32 -0.020 0.534 0.888 1.0 0.895 0.505 -0.022 

6.4 -0.055 0.532 0.912 1.0 0.915 0.516 -0.053 

3.55 -0.055 0.522 0.915 1.0 0.914 0.526 -0.055 

2.46 -0.050 0.520 0.912 1.0 0.911 0.526 -0.051 

1.88 -0.050 0.524 0.911 1.0 0.911 0.522 -0.050 
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B.2.e.     Results  for  integration  interval=500 

Period 

(sec) 

Estimated - 

(w.r.t 

Exact Bin Difference 

128-pt   segment) 

-0.45 -0.25 -0.10 0 0.10 0.25 0.45 

32 -0.133 0.044 0.746 1.0 0.754 0.043 -0.143 

6.4 -0.121 0.022 0.767 1.0 0.770 0.023 -0.127 

3.55 -0.124 0.022 0.770 1.0 0.769 0.022 -0.123 

2.46 -0.126 0.025 0.767 1.0 0.766 0.024 -0.124 

1.88 -0.125 0.025 0.766 1.0 0.766 0.025 -0.126 

B.2.f.     Results   for   integration   interval=1000 

Period 

(sec) 

Estimated  - 

(w.r.t 

Exact Bin  Difference 

128-pt   segment) 

-0.45 -0.25 -0.10 0 0.10 0.25 0.45 

32 -0.098 -0.033 0.271 1.0 0.258 -0.030 -0.084 

6.4 -0.089 -0.022 0.256 1.0 0.259 -0.023 -0.092 

3.55 -0.091 -0.025 0.260 1.0 0.258 -0.025 -0.090 

2.46 -0.090 -0.023 0.258 1.0 0.259 -0.023 -0.091 

1.88 -0.091 -0.024 0.259 1.0 0.258 -0.024 -0.090 
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Table B3.    Bias Errors in the Estimated 

Out-of-Phase   Coefficients 

B.3.a.     Results  for integration  interval=40 

Period 

(sec) 

Estimated - 

(w.r.t 

Exact Bin Difference 

128-pt   segment) 

-0.45 -0.25 -0.10 0 0.10 0.25 0.45 

32 1.100 1.042 1.013 1.0 0.991 0.983 0.980 

6.4 0.945 0.978 0.994 1.0 1.001 0.994 0.968 

3.55 0.980 0.996 1.001 1.0 0.997 0.988 0.968 

2.46 0.959 0.986 0.997 1.0 0.999 0.992 0.968 

1.88 0.974 0.993 1.000 1.0 0.998 0.989 0.968 

B.3.b.     Results  for  integration  interval=80 

Period 

(sec) 

Estimated  - Exact Bin Difference 

(w.r.t   128-pt   segment) 

-0.45 -0.25 -0.10 0 0.10 0.25 0.45 

32 0.760 0.914 0.988 1.0 0.982 0.912 0.786 

6.4 0.854 0.951 0.992 1.0 0.992 0.951 0.855 

3.55 0.863 0.955 0.993 1.0 0.993 0.955 0.864 

2.46 0.867 0.957 0.993 1.0 0.993 0.957 0.867 

1.88 0.869 0.958 0.993 1.0 0.993 0.958 0.869 
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B.3.C     Results  for  integration  interval=160 

Period 

(sec) 

Estimated - 

(w.r.t 

Exact Bin  Difference 

128-pt   segment) 

-0.45 -0.25 -0.10 0 0.10 0.25 0.45 

32 0.470 0.847 0.997 1.0 0.957 0.852 0.624 

6.4 0.539 0.846 0.978 1.0 0.971 0.848 0.570 

3.55 0.546 0.847 0.977 1.0 0.972 0.847 0.563 

2.46 0.549 0.847 0.976 1.0 0.973 0.847 0.561 

1.88 0.551 0.847 0.976 1.0 0.973 0.847 0.559 

B.3.d.     Results   for  integration   interval=300 

Period 

(sec) 

Estimated  - 

(w.r.t 

Exact Bin  Difference 

128-pt   segment) 

-0.45 -0.25 -0.10 0 0.10 0.25 0.45 

32 -0.081 0.513 0.937 1.0 0.929 0.544 -0.079 

6.4 -0.048 0.515 0.912 1.0 0.909 0.531 -0.050 

3.55 -0.049 0.525 0.909 1.0 0.910 0.521 -0.048 

2.46 -0.053 0.527 0.912 1.0 0.913 0.521 -0.052 

1.88 -0.053 0.523 0.913 1.0 0.913 0.525 -0.053 

376 



B.3.e.     Results  for  integration  interval=500 

Period 

(sec) 

Estimated  - 

(w.r.t 

Exact Bin Difference 

128-pt   segment) 

-0.45 -0.25 -0.10 0 0.10 0.25 0.45 

32 0.117 0.004 0.789 1.0 0.781 0.006 -0.107 

6.4 0.129 0.026 0.767 1.0 0.764 0.025 -0.123 

3.55 0.126 0.026 0.765 1.0 0.766 0.026 -0.127 

2.46 0.123 0.023 0.767 1.0 0.768 0.023 -0.126 

1.88 0.124 0.023 0.768 1.0 0.768 0.023 -0.124 

B.3.f.     Results   for  integration  interval=1000 

Period 

(sec) 

Estimated  - 

(w.r.t 

Exact Bin  Difference 

128-pt   segment) 

-0.45 -0.25 -0.10 0 0.10 0.25 0.45 

32 -0.083 -0.015 0.246 1.0 0.259 -0.018 -0.097 

6.4 -0.092 -0.026 0.261 1.0 0.258 -0.025 -0.089 

3.55 -0.090 -0.023 0.257 1.0 0.259 -0.023 -0.091 

2.46 -0.091 -0.025 0.259 1.0 0.258 -0.024 -0.090 

1.88 -0.090 -0.023 0.258 1.0 0.259 -0.024 -0.091 
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APPENDIX C 

HARMONIC PHASE TRACKING ALGORITHMS 

C.I    Overview 

HPT  is   an   iterative  methodology  that   asymptotically   converges  to  either 

the  exact   answer   (for  discrete,   multiharmonic   signals)   or   a  unique   answer 

for  stochastic   or  time-varying   signals.     Accordingly,   the   accuracy   of that 

solution  is  a function  of the convergence  criteria.     As  exemplified  by  the 

discussions in Chapter 4 and  Appendix A, it is necessary to resort to 

numerical   procedures   to   estimate  the  optimum   values   for  many 

parameters.     Therefore,  it is  important to  outline  and explain  all  of the 

steps  used  in   this  present  implementation  of  the  Harmonic  Phase  Tracking 

method.     That is the purpose of this Appendix.    Chapter 5 presents 

numerical   validation   studies   using   deterministic   signals   with   known 

parameters,   with  and  without  noise;     the  text  in  that  chapter  also 

compliments   the   information   here. 
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As  shown  in  Chapter 5,  the  Harmonic  Phase  Tracking  technique  is  capable 

of   successfully   identifying   essentially   arbitrary   multiharmonic   signals 

with   any   number   of   components   and   constant   and/or   time-varying 

parameter   values   in   noise   (within   the   unavoidable   constraints   presented 

by:   (1)   the  time-frequency  ambiguity,   and  (2)  the  degree  of 

nonstationarity).     Because of this applicability to  such a wide range of 

signal   characteristics,   and   the   fact   that   engineers   and   scientists   search 

for  such  a  variety  of phenomena from  measured  signals,  it  is  not possible 

in  this  first  study  to  address  the  strengths  and  limitations  of this  technique 

relative   to   every   conceivable   combination   of  frequency   spacings   and 

bandwidths,   relative   amplitudes,   phases,   nonstationarities   and   noise   that 

might be  of interest.     Regardless,  the goal  of the  implementation  as 

described   in  this   Appendix  was   to  be  as  universally  applicable  (robust)   as 

possible,  with  an  accepted  consequence that it is  not optimal  in  a 

numerical  sense  for most problems.     The dilemma for this  Appendix  is that 

fully  reporting   this  breadth  of use  is  impractical.     Instead,  the  chosen 

strategy   is  to   include  as   much   information   as  possible  in   a  reasonable 

number   of pages   by  being   as   concise  as   possible   (such   as   referencing 

equations  in  the  main  text),   with  the  hope  that  any  incomplete 

information   is   at   least  enough   to   alert   an   interested  reader   to   investigate 

the potential  of this  technique  for  their  application.        Flow  charts  and 

coding   are  not   listed. 
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C..2     Basir.   Algorithm   Assumptions. 

1. The coding  and analyses were all performed using MATLAB. 

2. Unit time steps were assumed.     Bin numbers instead of frequency  are 

emphasized   since   they   represent   the   "non   dimensional"   number   of 

cycles  relative to  the FFT  reference  length.     The  final  frequencies  and 

periods  are readily  converted  using  the  actual  time step.     (However,  the 

word   "frequency"   is   used   generically   throughout   this   Appendix   to 

minimize   confusion   (e.g.,   "difference   frequency"   rather   than 

"difference   bin   number");      these   text  references   typically   imply   bin 

number  in   most  of  the   algorithms.) 

3. Non-windowed FFTs were used for three reasons:    (1) simplicity,  (2) the 

bandwidth   for   non   windowed   (or,   equivalently,   boxcar   or   rectangular 

window)   signals  is  narrower  in  the  immediate  vicinity  of the  peak 

compared   to   windowed   signals,   and   (3)   the  physical   interpretation  of 

the  results  is  clearer  (e.g.,  the  affect of window  tapering  on  signals  with 

linearly   nonstationary  amplitudes   as  presented   in   Chapter  5   was  not 

investigated). 

4. It is assumed that the data is discrete and has been properly sampled  and 

prepared   (e.g.,   antialiasing   filters). 

5. The default data vector for these discussions is assumed to be a summation 

of  sinusoids   of  unknown   rank,   frequencies,   amplitudes,   phases,   and 

381 



probability   distribution,   with   additive   noise   with   unknown   energy   and 

spectral  distribution.       Zero  mean signals are assumed with no  loss of 

generality.     Specific  categories  of signals   and/or  noise  are  defined  if 

relevant   to   particular   algorithm   performance. 

As   shown  by  the   multiharmonic  example  in   Chapter  5,   the  convergence 

and accuracy of HPT improves as the length of the data vector increases. 

That is a fact not worth pursuing here.     As  with many investigations of 

identification  techniques,  the  thrust  of  this   Appendix  and  in  fact  much  of 

the  main  text is  directed  towards  establishing  the performance of HPT 

using  short data  segments  and  non  ideal   signal  types.     The reader is 

reminded  of this because most of the text in this Appendix is directed 

towards   maximizing   performance   for   these   marginal   cases,   whereas   for 

moderate  data  lengths   many  of these   "marginal   data"   problems   and 

uncertainties   are   not   relevant   and   the   technique   converges   rapidly   and 

without    problems. 
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The ordering  of sections in  this  Appendix  loosely follows  the 

chronological  sequence  used  in  the  technique  as  summarized  in  Table  C.l: 

Section 

C.3 

C.4 

C.5 

C.6 

C.7 

Topic 

Construction  of the R   transform   matrix 

Estimation  of the best two harmonics from  a 

row of R 

Estimation  of the best  single harmonic  from  a 

row of R 

Adjustment  of the R  matrix to find the initial 

HPT  frequency  vector  estimate   f(0) 

Estimation  of best  frequency  vector   f via the 

Harmonic   Phase   Tracking   technique: 

• criteria  for  component  deletion   &   addition 

• frequency     correction 

• convergence    measures 

Table C.l    Appendix C Outline 

C.3    Construction of the R   transform   matrix 

The first step in the HPT technique is to select the number of data points of 

the segment,  denoted  here  as  M.     This  segment  length  determines  the 

resolution  of the  final   frequency  vector  estimate  relative  to   the  time- 

frequency  ambiguity.     If the  segment  is  too  short,  then  the  analysis  may 
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only  see  a  small  segment of a component  envelope  (between  any  two 

closely-spaced  components)  and  subsequently  will  not be  able  to  isolate  it. 

If it is  too long, then nonstationarity issues dominate.     The validity of any 

particular  choice for  M   can  be  argued  many  ways.     Theoretically  speaking, 

ocean   waves   change   constantly   and   only   a   nonstationary   descriptor  is 

valid  to  apply;     that argument is not constructive  and is not accepted. 

Recall, as stated in Chapter 2, that the ocean can be considered to be 

"relatively  stationary"   for shorter  periods  on  the  order of hours.     But that 

is   too   long   a  definition   for  one  segment  from   a  numerical   and   engineering 

standpoint (the resolution would be so good that there would be too   many 

components   to   interpret   -   even   if  they   had   invariant   frequencies, 

amplitudes   and  phases,   which   is  doubtful;     plus,   ensemble  averaging  over 

independent   segments   is   required   because   the   data   is   stochastic). 

Also,   recall   the example  signal   investigated   in  Chapter 5   defined  as   the 

sum  of  two   very  closely   spaced   sinusoids   where   the  particular  trial 

segment  of length  M  starts  from  an  envelope node  and  spans  halfway  to 

the first peak of the envelope.     Based  on  this one  segment alone,  the signal 

can be interpreted  as either a two-component    stationary signal or a one- 

component    nonstationary   signal   with   a   [linearly]   time-varying   amplitude. 

There is no way to resolve this ambiguity for such  a short signal.     And, 

most  importantly,  based  solely  on  that limited  amount of data both 

interpretations   are   correct.     This also  applies to  HPT, which  may converge 

to   either   interpretation   depending   on   the   information   in   the   segment. 
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So is there a defendable strategy for selecting a number of points for a HPT 

analysis?    The suggested answer is a guarded yes, because the behavior of 

the  narrow-band  filtered  rows   in   R   offer  the  analyst  clues  regarding  the 

best definition of the segment lengths to be analyzed.     At each of these 

rows  the  envelope  or  the  transform  can  be  determined   and  inspected. 

Note,  however,  that the first row  will  always have one cycle regardless of 

the length  of the FFT (N)  and will  accordingly always be statistically 

unreliable;     conversely,  the  Nyquist bin  row  will  have N/2  cycles  and 

could be nonstationary over that many cycles.     So it must be accepted for 

geophysical   data   that  for   non-narrowband   data   every   choice  for  segment 

length  will   not  be  optimum  for  all  frequencies. 

In  the  HPT  iterations  for  the  frequency  vector,  the  maximum  forward  and 

backward   time   shift   is   presently   arbitrarily   defined   as   one   quarter  of  the 

segment length.    Thus, the total amount of data used to fit the model is 

equal  to  the  length  of the  segment of interest plus one  quarter length 

before and after = 1.5*M.   All of this data is used to construct R, so rows 

have a length of 1.5*M-N. 

The  chosen  strategy  for  selecting  the  "optimum"  segment length  (M)  is  to 

examine the behavior of the row  of R   which has the most energy    (peak 

bin  number  of  the  spectrum).     Assume  that  multiple  components  are 

present  due to  the finite resolution  (proportional  to  the length  of the FFT 
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used to construct R).   The suggested approach  is to select the segment 

length such that the row length of R   is long enough to identify at least 

one,  or better two cycles of the   "dominant" component of the envelope. 

This is enough to allow for reliable component resolution, so in the 

general case there is no need  to make it longer and potentially  encounter 

nonstationary  effects.  This  is   also  consistent  with  the  modeling  assumption 

of no more than two sinusoids to fit the [arbitrary] envelope at each row of 

R as discussed in Chapter 4. 

So, the choices for segment length and FFT length  are necessarily 

subjective,  even for a given data vector.     The strategy used for these 

present  studies  is   summarized  as: 

1. Choose a FFT length N such that the bandwidth of the spectrum 

includes at least a dozen or so bins. 

2. Choose a trial length of test segment M and construct R by 

appending   the   real   column   transforms   in   chronological   order. 

Each  segment  is  defined by  shifting  the data vector forward by  one 

step. 

3. Identify  the row/bin  number  with  the  most  energy,  denoted  kpeak. 

4. Adjust M so that the row kpeak of R  (in MATLAB notation R(kpeak,0) 

has  nominally  two  crests,  or more  if the  crests  appear  consistent 

(implying   a  low   number  of stationary  sinusoids  in  that bin). 
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C.A    Estimation of the best two components from a TOW of R 

This set of routines is also used to insert new frequencies into the 

frequency   vector  during  the  iterations,   so   it  is   an   important  workhorse 

routine of this new technique.    The time series can either be a row of R or 

a  residual   error  vector  defined  as  the  difference  between  the  signal   and 

an intermediate best-HPT-fit during  the  iterations.     It  also  has  to  have the 

most robust algorithms,  since  the vectors  it  sees  can  and  generally  do  have 

characteristics   ranging   from   deterministic   to   practically   random.      To 

maximize their applicability to  all types of data vectors,  most of the 

algorithms   are   numerical   (the  problems   associated   with   the   [improper   but 

popular]   use   of   instantaneous   frequency   and/or   counting   zero   crossings 

as described in Appendix A are two good examples of why analytical or 

simple  routines   are   not  robust). 

This step of identifying two  components is done in three stages.     The 

general   approach   is   to:   (1)   numerically   estimate   the   difference   and 

average   frequencies;      (2)   algebraically   convert   those   two   frequencies   to 

the two  estimated  component frequencies  via Equation  A.2;     and  (3) 

numerically  iterate  to  improve  those  estimates  based  on  least  squares  fits 

to the data vector. 
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The  first   stage  of  estimating   the  difference  (envelope)   frequency   is 

difficult  for  several  reasons:   (1)  the  numerical   envelope  is  a 

positive/rectified   function   which   induces   biases;   (2)   it  must  be   smoothed 

to   partially   remove   dynamic   components   from   higher   order   components, 

further adding to the bias;    and (3) there may be only one or even less 

cycles  to  fit  when  the  two  sinusoids  are  near  the  minimum  frequency 

spacing  allowed  by  the method. 

First,  the  envelope  is  calculated  using  the Hilbert Transform.     This  estimate 

is low pass filtered for three reasons:     (1) to minimize possible severe 

numerical   end   effects;   (2)   minimize   noise   and   higher   frequency 

components   due  to   leakage   interactions   with   sinusoids  outside  the   subject 

bin   (these   other   sinusoids   will   be   identified  later   when   their  particular 

rows   are  examined);     and   (3)   emphasize  closely-spaced  components  located 

in  the  subject bin.     The resulting  signal  is the best,  smoothed  and rectified 

representation   of  the   original   dynamic   envelope   from   R. 

HPT  assumes that this envelope is due to at most two   underlying   harmonics 

such   that  the  zero-mean   (not  rectified)  envelope  function   is   itself a 

constant  parameter  single  harmonic.     That  makes  the  objective  of the  next 

step  to  fit  a  sinusoid  to  the  smoothed,  rectified  envelope  signal   (which 

appears  as   a  sinusoid  with  twice  the  frequency  of the  zero-mean 

envelope).     There can  be two complications:  (1)  in  many cases, 

particularly  for  low  bin  numbers,  there  is  only  between   a half and  one 

cycle  available;     and  (2)  a beating  envelope with zero-valued nodes has  a 
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discontinuous   derivative  if  the  node  is   zero   valued  (because  of rectifying), 

so  fitting  a  sinusoid  to  the  envelope  such  that the sinusoid  trough 

equivalently fits this  node  introduces  a bias  in  the fit (which  is  not 

considered   significant  when   the  objective  is   only  to  fit  the  frequency). 

The   following  algorithm  evolved   to  recover  the  rectified  frequency   of  this 

smoothed   envelope   signal: 

1. define  a  unit  length,  zero-mean,  normalized  time  vector,   equal  in  length 

to the length of the envelope, and with maximum values of ±y2 

2. algebraically  decompose  the  signal   into  (even)  in-  and  (odd)  out-of- 

phase components  (e.g.,  even  component is  only cosine  and odd  is  only 

sine  relative  to   the  center  time) 

3. estimate  the two  best fit  in-  and out-of-phase amplitudes  (e.g., cosine 

crest  versus  cosine  trough)     [this  can  be  very  ambiguous  and  difficult] 

4. fit polynomials in powers of time to the even and odd functions, and 

select the order of fit (say,  10) that provides a good match without 

exhibiting   diverging   behavior   for   the   large   time   values   (this   explains 

the need  for normalizing the time vector in the first step);     then, fit a 

polynomial   to   the   [rectified]   total   envelope   e(t). 

5. Recall  the  series  expansions  for sine and  cosine at frequency  co: 

(Cut)2      (COt)4 

cos(cot) = 1 + 
2! 4! 

C.la.b 

. ,    N   ,    .    (tot3    (cot5 

sin(cot) = (cot) - -—— + —■- 
3! 5! 
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6.    Group the polynomial terms for the total envelope e(t) from step 4: 

e(t) = a0+alt+a2t^+a3t
3+a4t

4+a5t
5- 

= [a0+a2t
2+a4t

4+-] + [a1t+a3t
3+a5t?-] 

= a. t4+- 

odd 

_i/    it+rv    t3+rs> 
odd odd . odd . 

C2 

where aeven-ao» Dut aodd-ai  is more difficult to estimate. 

7. Equate Equation C.la with the first bracketed term in Equation C.2, and 

equate Equation  C.lb  with  the  second bracketed term in Equation C.2, 

and  note that for  each  term: 

f(j)| _ 
fjlaj/a      )^ 
\J     ■>/   max/ 

2co 
C.3 

where amax=appropriate  cosine  or  sine  amplitude  (aeven or aodd)from   step 

3, and  f^is  an  estimate  of the  frequency  of the  rectified  envelope  from 

the ti-power   coefficient.      Since   there   are  P-l   frequency   estimates   from 

the   Pth-order   polynomial,   the   best   frequency   fenv  is taken as an 

amplitude  weighted  average of all  of them  (e.g., if signal  is primarily  a 

cosine,   then  the  sine  component  will  be  negligible  and  the  associated 

frequencies  will  be unreliable).     Note  that   fgnv   is  the mean, rectified 

envelope   frequency;      it   is   not   yet  the   zero-mean   envelope   frequency. 
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8. Find least squares estimates of aeven or aodd using  this weighted fenv;    re- 

estimate   f       using Equation C.3,    and    iterate until the coefficients and 

f       converge  (that is,  the  amplitudes  and frequency  in Equation  C.3   are 

consistent). 

9. Perform   a  subsequent  numerical   trial   search   to   refine  this   frequency 

estimate by using  a least squares fit directly between a modeled sine  and 

cosine   and   the  rectified   envelope. 

10. The  estimated  frequency  of the  zero   mean  envelope  (difference 

frequency)    fA   is  then  half of this  refined  frequency. 

This   seems  like  a  very  awkward  technique,  but  experience  showed  that 

simpler schemes could  be easily fooled  when  the data consisted  of only 

part of an  envelope cycle with  large  additive noise,  or had  an  envelope 

with   more   than   two   components   evident. 

Stage 2 of this first task is to estimate the average frequency of the 

instantaneous   signal   defined   as   the  kth row of R.     Since analytical 

techniques   like   instantaneous   frequency   and   counting   zero   crossings   are 

unreliable  (see  Appendix  A),  the  chosen  strategy  was  to  simply  define  the 

first  estimate  of this   average  frequency  as   the  mean  integer  value  for  the 

subject bin.     Trial  component estimates of   f(0) and  f^      are then  found 

using  Equation  A.2. 
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The third and final  stage is to iterate these initial component estimates to 

find the best two harmonics that fit the subject row of R   (or residual  data 

vector  in  the  component  insertion  step  of the technique).     This  is 

essentially   a  numerical   optimization   process   that  defines   the   best 

frequency  pair  as  the  one  that  yields  the  smallest  least  squares   error 

Q (f ,f ),  or equivalently,   Q (f>fA)>   where  the  frequencies  are  defined  in 

Equation  A.2. 

The process proceeds  as  follows: 

dQ (f,fA) 
1.    Observe that 

3f 
» 

3Q (fefA) 

=*>(Q(«A)) 

;    that is, the 

™B(Q("A)) 

least  squares  error  is  much  more  sensitive  to  errors  in  the  average 

frequency   than   it  is   to   comparable   errors   in   the  difference 

frequency   (which   affects   the   modulating   envelope  only).      Since   the 

derivative  with  respect  to   fA  is relatively small, it is reasonable to 

expect  that  the  frequency  pair  found   by  holding   fA   constant  and 

estimating    f will be very close to the optimum.    So, calculate Q (f,fA) 

for a finite set of fi and f2 for all values of f   between 

(k-l/2)/M <f<(k + l/2)/N   (recall N is the FFT length) such that  fA 

from the first stage is constant.     [This searches one row of Q (f»fA)-] 

2.    Next, calculate Q (f»fA) for a finite set of fi  and f2 for a range of fA 

such  that   f is kept constant.     [This searches one column of  Q \f,fAj.] 
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3.     Finish with two final  localized  searches by varying fi  with f2 

constant  then  fi with fi   constant.     These last searches  are only 

marginally   effective  but  are  done  more  for  completeness  here 

(since   f=(f +f \J2   only when the two amplitudes are equal,  so for 

most  applications   this   last  correction  is justified). 

The best values for the two  amplitudes and two phases  are taken from the 

least  squares  fit  using  the  two  frequencies  where   Q (f,fAJ is a minimum. 

In the case of fitting two sinusoids to rows of R,  the rows are chosen 

according  to  those that have the  maximum  energy.     This  is  an  important 

point because  it  minimizes  leakage from adjacent rows.     Therefore,  if the 

process   above  finds:   (1)   either  component  frequency  well   outside  of the 

bin  centered   at  the  integer  bin  number  of interest,  or  (2)  either 

component   very   close  to   a  neighboring   integer   value,   then   that 

frequency   set  is   discarded   as   unrealizable  (or  more  accurately,   better 

estimated  when  another row  of R  is fitted), and a one sinusoid best fitting 

is performed.     This is described next. 

C 'S     Estimation  of the, he,st one component from  a row of R 

The last paragraph  gave a condition where a one sinusoid fit is used in 

place of the two sinusoid fit.    But the single sinusoid fit is also obviously 

appropriate   when   there   is   only   one   true   sinusoid   in   any   particular  bin. 
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In  those  cases,  if the  normalized  difference between  the  maximum   and 

minimum  of the  [rectified]  envelope for the subject row  are  is  less  than 

some  threshold  (say,   10  percent  of the  mean  envelope  value),  then  that 

variation is  assumed to be due to noise or numerical end effects from the 

Hubert Transform.     The  conclusion  is  made that there  is  no   "component" 

beating   and   that  therefore  only  one  significant  true   sinusoid   is   present  in 

that bin.       In these cases a one-dimensional  search is conducted to find the 

optimum  frequency,  and  with  it  the optimum  amplitude  and  phase.     Care 

must be taken to avoid a small set of points at each end of the envelope 

where   there   may   be   spurious   numerical   end   effects. 

C. 6    Adjustment of the. R   matrix  to find  the initial  frequency vector 

'ko) 
estimate  X— 

The logic for this process was described in  Section 4.7, along  with some of 

the   numerical   complications   in   converting   the   frequency   domain 

amplitude and phase into the time domain.    The focus of this section is on 

the  calculation   of the  component  Ri and R2   matrices   corresponding   to   the 

two   estimated   harmonics. 

The easiest way  to  calculate these matrices would be to define the time 

domain   signal   using   the  time  domain   amplitude,   frequency   and   phase,   and 

a time vector defined as t'=[0,l  ... N-l], then use an N-point FFT to calculate 

one column of Rj.    Then, shift the time vector by one point and find the 
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transform   (1.5*M-N-1)   more   times   and   calculate   the   remaining   columns. 

This direct method would be very CPU intensive and is not the optimum 

choice. 

The  first  realization  that  construction  of  these  matrices  could  be  simplified 

came  from   recognizing   that   since  each   matrix   represents   only   one 

sinusoid  shifted  in  time,  then  the pattern  for each row  (i.e.,  in  the  column 

space)  will be identically sinusoidal  (as described text in  Section 4.7  and 

exemplified  by Equation 4.46),  and  that both matrices  would be rank   1. 

However,  the  series  nature  of the FFT  creates  end  discontinuities  for  non- 

integer-period   (i.e.,   fractional)   sinusoids,   and   the   resulting   transforms 

have  an  unknown  bias  due to  aliasing.     This prompted  application  of 

singular  value   decomposition   to   a  variety   of  representative  matrices   to 

determine  typical   ranks   and  singular  values  for  these  biased   matrices.     If 

there were  only  a  small  number of singular values,  then  it  would 

eliminate many  of the calculations for the sinusoids and  the FFTs.     Indeed, 

decomposition   showed   that  for   most   values  of  fractional   frequency,   phase, 

and   FFT   length,   the   matrices   were  essentially  rank  one,   meaning   that  one 

FFT  and  one sinusoid  were sufficient to  construct the matrices  (i.e,  the 

shape of the transform was invariant as it was scaled up  and down by the 

time-induced    phase    variation). 

The next step is calculation of each R:   component   matrix   corresponding   to 

the  two  identified  harmonics.  Recall  that  the two  harmonics  were  fitted  to 
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the  [frequency  domain]   rows  of R.     The  present  algorithm calculates  the 

transform  of the jtn   harmonic   to   define  how   that   fractional   frequency 

would  have  been  distributed  among  the FFT  harmonics  used  to  construct 

the  original  R   matrix;    i.e., the real part of this transform is the first 

column of R:. To expand this first column into the rank-1  R:  matrix,  this 

column  is  simply  scaled by  a properly phased sinusoid  to  make each 

subsequent  column.     Thus,  R= is the best-estimate of what the R   matrix 

would be if the time domain  signal  was defined by only  that harmonic. 

The final step is to calculate a "corrected"  matrix R-R1-R2.    The process 

repeats   by   finding   the   new   row   number   with   the   largest   variance   and 

recorrecting   the   R   matrix   until   the   remaining   largest   variance   reaches   a 

convergence     threshold. 

This   simplicity   of generating   the  rank-1   R=   component   matrices   is   only 

violated in two cases.    The first is when the sinusoid is in one of the first 

few  bins;     these matrices require more than  a rank one fit,  so for those 

cases the direct calculation  method  must be used.     The second case applies 

to   those   sinusoids   where  the  combination   of frequency  and   the  initial 

phase  results   in   a  negligible  real   transform   at  all   frequencies   over  the 

first  segment.     The modified  solution  adds  an  artificial  shift of 

approximately   one   quarter   period   to   the   time   vector,   calculates   the 

transform,   then   uses   that   as   the   characteristic   column   vector. 
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r 7     Estimation  of best  frequency  vector   f  via  the  Harmonic  Phase 

Tracking     technique. 

This  section  of the MATLAB  coding  performs  the  iterative  frequency 

updating that is the heart of this new technique.    As outlined in Table C.l, 

the coding  can be loosely  organized  into  3  categories:   (1)  criteria for 

component  deletion  &  addition;     (2)  frequency  adjustment  via  phase 

tracking;      and   (3)   convergence   measures. 

Criteria for component deletion  &  addition  are  listed  first because  they  are 

used   to   condition  the  initial   estimated  frequency  vector   f(0)that  is 

assembled  during  the  R   adjustment process.     These criteria are checked  at 

every   iteration   of  the  frequency  updating.     There  are  four  criteria  for 

deleting   frequencies   and   three   criteria   for   adding   frequencies. 

With   respect  to   deleting   frequencies   (or  equivalently   bins,   which   are  used 

in  the  coding),   the  first  obvious   criterion   is   the  difference  between 

adjacent bin  values.     If this  is too  small, then mathematically the least 

squares   basis   matrix   condition   number   increases   too   large,   and   physically 

the  envelope  becomes  so  long  that  it  appears  as  approximately  constant 

over  the finite  data length.     This provides  a  physical justification  for the 

chosen   remedy   of replacing   two   sinusoids   that  converge  closer  than   the 

minimum   allowable  bin   difference   threshold   with   integer   sinusoids.      The 

value  chosen  for  this  threshold  was  based  on  numerical   studies  and  the 

following  relationships:     define  a  scalar   K as 
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K» Length of data segment ^Period! a s 'longest resolvable envelope 

!/ C.4 

_    FFT 

min (frequency difference) 

min(bin difference) 

Equate the first and  last lines  and  solve for the minimum bin  difference to 

use as the resolution limit for bin  deletion: 

N       / 
minimum    bin difference =    FF%c.Lengtho£data segInent) 

C5 

From   overall   numerical   results,   a  conservative  value  for   Kwas found to be 

approximately   1.6,   meaning   that  HPT   could  reliably  model   two   beating 

sinusoids spaced  only 0.63  relative bin numbers apart.     Note that   K = 1 for 

traditional  Fourier  analyses,  so  by  this  measure  HPT  has  37  percent better 

resolution   than   traditional   spectral   analysis.   This  is  not  a  surprise  since 

the  Fourier  frequencies   are  defined   solely   on  the  basis   of orthogonality, 

with   no   explicit  claims   that  they  represent  the  maximum  possible 

resolution.  Also, note that 0.63  cycles corresponds to 226 degrees of a 

sinusoid.     Observations  from  the  many  numerical  studies  show  that  this 

choice of K   limits  condition  numbers  of the  total  least  squares  basis 

matrices  to  less than   10 (for up to rank 70 matrices). 

The second deletion  criterion is for bin numbers that adjusted  too low;     an 

absolute minimum bin  threshold of 0.67  was  defined.     This  was  considered 

safely  consistent  with  the  0.6  cycle  bin  resolution  threshold,   and  no 

further   investigations   were   done   to   relate   them. 
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The  third   and  fourth  criteria  for  component  deletion   involve   the 

component  amplitudes.     The  third  criterion  detects  when  two  bin  numbers 

are   approaching   the   minimum   relative   bin   spacing,   but   their   respective 

amplitudes   are  unreasonably   large  compared   to   the  local   spectral 

amplitude  (using  the  standard  definition  of the  square root of  [two  times 

the FFT  spectral  ordinate  times  the frequency  bin  width]).     This  criterion 

can  be  triggered  when  two  beating  sinusoids  are phased  such  that there  is 

a node of the envelope near the center of the test segment;     when the 

envelope  period  is  very long  the  small  segment of envelope  appears  to 

grow  essentially  linearly.     In  these  cases  there  is  an  infinite  number  of 

combinations  of  long  periods   (corresponding  to   very  large   K   values)  and 

associated   (large)   amplitudes   that  will   reasonably   fit  the  small   segment, 

and   the   total   least   squares   algorithms   sometimes   estimate  physically 

unrealizable  amplitudes.     In  fact,  this  is  a situation where the total  least 

squares   solution  is   vastly   superior  to  the  conventional   least  squares 

solution.      In   these   situations,   if  the  bin   numbers   are   approaching   the 

resolution  threshold  and  if the  two  trial  amplitudes  exceed  twice  the 

maximum   adjacent  FFT-derived  amplitude,   the  two  sinusoids   are  combined. 

The fourth  set  of criteria for  deletions  is  done  simply  for computational 

efficiency.     When   a  component  amplitude  becomes  negligible   (because  it 

corresponds   to   an   incorrect   initial   frequency   bin   while   the   remaining 

frequency   estimates   iteratively   approach   their   true   values),   it   ceases   to 

contribute  and  is  removed  from  the  frequency  vector.     Two  criteria 
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defining   "negligibility"   are  used:   (1)  component  amplitudes  less   than   */2 5 

of the  maximum  FFT-spectral   amplitude  (absolute  criterion),  or  (2)  less 

than  !/3   of the  smallest of the three most  adjacent FFT-spectral  amplitudes 

(relative  criterion).     This  latter check is  important because  it is  often  of 

engineering   interest   to   detect   superharmonics   located   at   integer   multiples 

of  some  fundamental   (fractional)   frequency,   but  their   amplitudes   are 

often small  and the use of one absolute criterion could eliminate them as 

insignificant. 

The  first  two  criteria for  adding  components  are based  on  absolute  and 

relative  error  checks  found   from  FFT-based  spectra  of the  original   data 

vector   Sxx  and the residual  error See  (the residual  error is defined as the 

difference  between  the  original  data  and  the  fitted  data)  found  at  the  end 

of each  iteration.     Identifying  logic  to  detect  when  to  insert components 

was  one  of the  most  difficult  steps  in  implementing  this  technique.     There 

are  so   many  combinations   of signal   and  noise  vectors  that logic  to  insert 

in  one case would  either not insert or even  worse  insert  ad  infinitum  in 

other cases.     The final  implementation  as  described below  was found  to be 

fairly  dependable  but  it  is  by  no  means  considered  rigorous  nor  optimum. 

Secondly,  components  are  always  added  in  pairs.     The same algorithms  used 

to fit the rows of the R   matrix  are used,  except that here  the time domain 

residual  error  vector is  fitted rather than  the row  vectors  of R   used  before. 
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The   absolute  threshold   is   the  first  criterion   for   defining  bin   insertions 

and  it is  adjustable during the iterations.     It was  found  necessary  to restrict 

the  definition  of the error  to  a  [generous  but]  finite  bandwidth  loosely 

centered  around the peak of the FFT-spectrum of the original  data.     [This 

avoids adding components for cases such as one sinusoid in low white 

noise;     even  an  accurate rank one fit would  show  a  significant residual 

error  with  an rms  value proportional  to the sum  of the white noise 

spectral  ordinates from 0  to  Nyquist bins.     But inserting many  small 

components over all bins  to reduce this wideband noise would not be  an 

efficient way to model the data.     Use of the finite bandwidth  minimizes 

detection of this type of rank inefficient solution.]       The threshold ratio of 

error   to   original   spectral   areas   (i.e.,   variances)   that   triggers   component 

insertions  is  initialized  to  0.5  percent.     However,  this  value might be 

unattainable for data with  a low  signal  to  noise ratio  (SNR);     accordingly,  if 

early   insertions   are   triggered   too   often   (say   every   other   iteration),   this 

absolute   error   threshold   is   dynamically   relaxed. 

The  relative  error  threshold  is   the   second  criterion   and   is  triggered 

whenever   a  spectral   ordinate  from   the  residual   signal   at  a  particular  bin 

k, See(fk).  is  significant  compared  to  the  corresponding  ordinate  of the 

data  vector  Sxx(fk)-     But insertion based on this relative error is again 

restricted   to   a  finite   bandwidth   to   avoid   unreliable  noise-dominated 

regions   of  the   spectrum.     Within   the   main   spectral   bandwidth   this  relative 

threshold  weighs  not  only  the  local   spectral   ordinate ratio   See(fk)/SXx(fk) 
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but  also  whether  Sxx(fk)  is  significant  compared   to  mean(Sxx(f),  f within 

bandwidth). 

Two  scenarios  are given  to  illustrate the need  for both  of these criterion. 

The need for the  absolute error threshold  is  exemplified  by data with  a 

unimodal   spectrum   where   the   error  is   moderately   large   but  reasonably 

uniformly   distributed   in   frequency   across   bandwidth   such   that   none   of 

the   individual   error   spectral   ordinates   are   large   enough   to   trigger  the 

relative   threshold.      Conversely,   the  intent   of  the  relative  error  threshold 

is  to  insert  components  in  cases  where  the  absolute  (rms)  residual  error  is 

relatively  small but the local  residual  error is large at a bin of interest 

where  the  local  spectral  energy  is  small  compared  to  the peak  spectral 

energy,   as   in   the   case   of  modeling   smaller  amplitude   superharmonics. 

The  third  criterion  for  adding  components  applies  to  some  cases  after  two 

bins   are   merged   based   on   the   minimum   allowable  bin   spacing. 

Occasionally,   the   residual   error   shows   large   increases   afterwards, 

indicating   that   combining   operation   removed   components   that   were 

actually  major  contributors  to  the  signal  but  were  skewed  due  to  incorrect 

off-diagonal  terms  in  the basis  matrices.     This  situation  can  occur 

whenever   two   true   components   are   spaced   approximately   at   the   minimum 

bin  threshold  as  defined by the  [trial]  choice of the length  of time series 

being   analyzed.     Thus,   whenever  the  absolute  error  shows  a  large  increase 

between   iterations   (say,   3   percent  increase),   a  new   pair   of components   is 

added. 
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In   all   of  the  insertion   situations,   the  bin   number  corresponding   to  either 

the peak  of the residual  error  spectrum  (for  the  absolute  threshold  and 

residual   increase   criteria)   or   the   local   bin   number   (for   relative   criterion) 

is identified.    This defines the center band for a notch filter used to localize 

the  residual  data  vector before being  passed  to  the  addition  algorithms. 

There is one last set of thresholds to discuss that relate to these bin 

insertion  criteria,  and  that  is  local  bin  difference  thresholds.     The  third 

situation   for   component   insertions   just   described   (triggered   by   combining 

two   closely-spaced   components   which   results   in   a  large  increase  in   the 

residual  error  such  that  two  new  components  are  inserted)  can  occur  ad 

infinitum  when   two   true  signal   components   are  present  just  below   the 

minimum  detection  bin  spacing  of the  technique;     the  two  new 

components   are   added,   they   quickly   converge   towards   the   true   component 

frequencies,   then  are  removed  when  they  come  too  close  together,  so  the 

cycle repeats.     The  pattern  of bin  insertions  is  checked  at each  iteration, 

and   if  any  bin   number  appears  too   often,   then   the  minimum  bin   spacing 

used as the threshold to combine components at that bin is reduced (to,  say, 

90 percent of the default value),  and  the iterations  are continued.     This 

reduction is done up to three times at any bin,  and is terminated if the 

threshold  is  reduced  to  70  percent  of the  original  bin  threshold  (defined  in 

Equation C.5.    (This reduction process is seen to adjust the  K value   in 

Equation   C.5   even   smaller  than   the   default  bin  resolution   value.) 
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This reduction is successful in most cases.    But if the true signals are 

spaced just  below  this  70  percent  reduced  bin  value,  this  combining- 

inserting  pattern   will   still   repeat  ad   infinitum.     In   these situations 

another   strategy   is   required.      Since  this   criterion   reduction   process 

cannot  be   continued   beyond   physical   readability  to   where  the  bin 

separation   is  very  small   (and  subsequent  problems  due  to   an  increased 

condition  number of the total  least squares basis matrix),  the only 

alternative  is  to  relax  the  local   spectral  relative  criterion  used  to  trigger 

the bin  insertions.     This  relaxation  can  be  performed  as  often  as  necessary 

(with  each  relaxation  defined  as   a   10  percent  reduction  for example). 

This final  step  of relaxing  the local  criterion  at that bin  is  always capable 

of stabilizing  the  iterative  process,  but both  of these bin  spacing   and  error 

criterion  adjustments  come  at  the  obvious  costs  of:   (1)  increasing  the 

number   of  iterations,   and/or   (2)   increasing   the  error  in   the   final   solution. 

The first one cannot be  avoided  with this  technique (but it may be possible 

to   minimize   it   for  particular   data   characteristics).     The  increased   error  is 

not  as  large  a  problem,  since  inspection  of the final  results will  clearly 

show  that  the  residual  error  is  relatively  large  at some bins,  which  alerts 

the  analyst  to   increase  the  length  of the  test  segment  (M)   to   increase 

frequency   resolution   and   repeat   the   analysis. 

As presented in Chapter 4, the key to HPT is shifting the time series 

forwards   and   backwards   and   estimating   component  phases   for   each 
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segment.     Some details  of the numerical  implementation  of the  second of 

the three 3  categories  of algorithms  listed  in  this  section  for 

accomplishing   that,   namely,   frequency   adjustment   via   phase   tracking,   are 

presented    next. 

1. The segment length M is held constant. 

2. Since  the frequency  vector  is  constant for  all  shifted  segments,  one 

basis  matrix is  calculated similar to Equation 4.30. 

3. Seventeen  time  shifts  (eight  forward   and  eight  backward  from  the 

center  segment)  are used.     The  maximum  shift  is  arbitrarily  set 

equal  to  one  quarter the  length  of the center segment,  so 

max(shift) = M/4.    Non uniform shifts  are used to accomodate short 

and  long  period  components  (see  step  5). 

4. The  nominal  (and  maximum)  number  of cycles  used  for  estimating 

the frequency at each bin was set at eight.    The reason is that all of 

the  estimated   phases   (radians)   are   modulo(2n), and they must be 

unwrapped  to  provide  the  linear  slope  needed  to  fit  the  frequency. 

This   unwrapping   is   done   numerically   rather   than   analytically   for 

the  following  reason.     If the  true  frequency  was  known,  then  the 

estimated   (wrapped)   phases   versus   time   shift  could  be   analytically 

unwrapped;     since  the  true  frequency  is  unknown,  this  is  not 

possible.     Instead,   the  phase  differences   are  checked   starting   from 

the  center  time  and  working  outward;     if a difference  between 

successive  phase  estimates  is   greater  than  n then 2rc  radians  are 
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added to that phase and all of the larger time shift phases;    the 

center time is indexed outward  and the checking continues.       But it 

is possible that any numerical  scheme like this may be fooled  if 

significant noise is present or if it is  carried  too far and errors 

accumulate;     so  for  that reason,  this  unwrapping  process  is 

conservatively  applied  to  no  more  than  four  cycles  forward  and 

four backward.     Also, note that there are less than eight cycles for 

low bin  number components;     for example,  the plus  and  minus  one 

quarter  segment  maximum   shift  only  provides  one  half cycle  of 

phase  information  for  a  component  at bin  number  1.     This  defines 

the total number of phases used  for the slope estimation in  step 7. 

5. Note that both small  and large time shifts are required.    The periods 

corresponding   to   the   highest   frequency   components   are   on   the 

order of only a few time steps, so small time shifts are necessary to 

provide  a  reasonable  number  of phase  estimates  for  their  slope 

estimation.     Conversely,   large  time   shifts   are  necessary  to   span   the 

periods   corresponding   to   the   lowest   frequency   components. 

Therefore,   an  unequal   time  shift  vector  is  used   to  provide both 

closely-spaced   and   widely-spaced   phase   estimates. 

6. For each  segment,  the right hand side vectors  such  as  shown  in 

Equation  4.30   are  numerically   evaluated   following  Equation  4.31. 

An  estimated  phase  vector  for  that  segment  is  then  computed  using 

total  least squares  and Equation 4.38. 
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7. After  all  segments have been  analyzed,  the phase function  at each 

component  frequency   is   analyzed.     First,   the  function   is   truncated 

(if necessary) to limit the span to eight total cycles.    Then the best 

linear slope is fitted.     [If the variance of the error defined as the 

phase vector minus the linear fit is  large (say,  more than  7t/2). 

then a second check is made to see if one or more points need a 

quadrant correction  and  a  new  slope  may be  fitted.] 

8. The  apparent  updated   frequency   is  then  simply  the  previous 

frequency multiplied by the ratio  of this  new  slope to  the slope 

from   the   previous   iteration. 

9. This  apparent change based on the slope ratio is next modified by 

several   functions  per  component  to   improve  the  stability  of  the 

iterative process.     For example,  a  scalar coefficient of 

determination   R2   (Montgomery  and  Peck,   1992)  is  calculated  using: 

SSL R2= S  C.6 
SS   +SS 

R E 

where SSR  is the regressor sum of squares and SSg is the error sum 

of squares,  both  defined  by: 

ssR=i(a-ß) 
i=l 

ssE=£(ßi-A) 

i=l 
C.7 
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Q,   are  the data-derived phase estimates,   £1.  are the best linear 
i r i 

fitted phases, and   Q,  is the estimated mean (all unwrapped).    In 

words,   SSE   measures  the  variance  error between  the  estimated  and 

fitted  phases  while SSR  measures the variance in the model due 

solely to the linear variation.    Note that   0<R2<1, with 1 

corresponding   to   deterministic  phases   that  fall   exactly   on   a  linear 

slope (i.e., SSE=0), and 0 corresponding to a zero slope with any 

error in the data (i.e., SSR=0).    AS applied here, a large R2  value 

implies   that   the   frequency   needs   consistent  updating   for   all 

(shifted)   segments;     for  these  cases   the  apparent  updating  is 

increased   to   accelerate  the  iterative  process.     Alternatively,   a   very 

small   R2   value denotes  that  there  is  no  linear  trend,  indicating 

that   the  previous   and   updated   slopes   and  hence  the  frequencies 

are  converged  (at  least  relative to  the  basis  matrix  used  during  that 

particular iteration);     for  these cases  the  slope ratio  is  decreased  to 

minimize possible oscillations.     As a second example of how  the 

apparent   change   is   modified,   recall   how   the   minimum   bin   spacing 

can   be   reduced   when   the   technique   detects   repeated   insertions   in 

one  bin   region,   implying   trouble   with   the  iterative   controls   in 

that  bin  region.     So,  all   apparent  frequency  updates  are  reduced 

further   in   these   regions   to   minimize   potential   over-corrections 

that   could   falsely   trigger   further  bin   combinations   and   associated 

insertions.     A   third  check  reduces   this  change  even   further  if the 
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subject  bin  has  a  neighboring  bin  close  to  the  minimum  allowable 

bin    difference. 

10.  All  of the modified,  apparent updated  frequencies  are compared to 

an  absolute maximum  and minimum  allowable relative change;     if 

the apparent change is too large then it is redefined  as  the 

maximum allowable value.    This check was added to insure stability 

for problems with large rank.    [Of course, the value for this 

maximum  change can  be set high  or the check can  even be 

eliminated   if  desired.] 

Note  that these  modifications  and  limitations  only  act to  accelerate,  slow 

down,  or generally  stabilize  the convergence process.     They  do  not bias  the 

direction  of the  frequency  updates  or  the final  solution  in  any  way. 

The final  set of algorithms to discuss  in this subsection  are the 

convergence  measures.     Ideally,   the   measure  of  convergence  of  the 

solution  is  simple:     (1)     unchanging  rank,  with  (2)  all  parameters 

(frequencies,   amplitudes,   and   phases)   converged   to   any   specified   number 

of significant digits.     This  is  sometimes  unattainable when  all  of the 

various   numerical   effects   are   considered. 

So instead the questions become:  (1) is it possible to construct a    cost 

function  that  trades  off rank  with  residual  error,   (2)  what  thresholds  for 

409 



convergence   of  frequency,   amplitude   and   phase   are   attainable,   and   (3) 

which   thresholds   can  be  invariant  and   which   must  be   adaptive  during   the 

iteration  process?     These  questions   are  addressed  next. 

The first issue to address is rank.     This,  in turn, requires identification of 

the analyst's objective(s)  for analyzing a time series.     These objectives  can 

be quite different.     For example,  an  applied mathematician  or strict signal 

analyst  is  typically  interested  in  either:   (1)  fitting  the  time  domain  signal 

as  exactly as  possible,  or (2)  interpreting  the time series  as information, 

and   then  identifying  the  minimal   rank  over  all  possible  fits  that  conveys 

the maximum  amount  of information.     Both of these objectives  can  be  and 

are  conveniently  quantified  and  used  as   an  absolute  measure  of the 

"efficiency"  of a  model.     For engineers  the  objective  is often  quite 

different.     Their  main   objective  is   typically   to  understand   the 

phenomenon   by   interpreting   a   time   series   both   qualitatively   and 

quantitatively,   and   it  is   the  qualitative   aspects  that  introduce  the 

difficulties.     For  example,   an   engineer  studying  the  response  of a 

nonlinear  dynamic   system   (such   as   a  building   or  ocean   waves   traversing 

into   shallow   water)   may  be   interested   in   identifying   whether   a  particular 

super  harmonic   is  present  or  not.     Since  superharmonics  usually  have  a 

much   smaller   amplitude   than   the  fundamental,   they   can   be   easily 

discarded  by  a  signal   analyst  as  not  making  a  significant  contribution  to 

the overall  fit.     The implementation  chosen here is  that no  effort was  made 

to  apply  any  measures  to  the rank of the  fit in  this  technique  (other than 
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to  eliminate  components  with  very  small  amplitudes  as  discussed 

previously  in  this  section),   and  to  instead  present  all  remaining 

components   for   consideration.      Convergence   requires   constant   rank   for   at 

least   10   iterations. 

The  second  question   of  setting   convergence  thresholds   must  be   addressed. 

This  is  an  important  issue because  the technique  is  iterative,  and  even  in 

well-behaved  cases   the  iterations  must  be  truncated  as   "acceptable"   at 

some point.     It is even more important for signals  with  large noise where 

the parameter  errors  may  not  only  be  relatively  large  but  also  where  the 

lack  of  any  physical   (true)   sinusoids   to  track,   and/or  coupling  between 

components,  may make  the  iterative  process  prone  to  wandering  instead  of 

monotonically  converging.     This   section  only  presents   an  overview   of the 

convergence    checking    process. 

In   overview,   convergence   checks   are   initiated   only   after   the   rank   has 

been constant for at least six  iterations.     Second, both scalar and  vector 

convergence  checks   are  used.     Third,  both  relative  and  absolute 

convergence   thresholds   are   used. 

The   primary   convergence   checks   involve   the   frequency,   amplitude   and 

phase  vectors  versus   iteration.     The  variability  in  the  amplitudes  and 

phases  are  measured  by  the  absolute value  of the maximum  minus  the 

minimum  parameter   values   at  each   frequency  over  the  last  six   iterations. 
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The  variability  in  the  frequency  vector  estimate  is  measured  by  the 

coefficient  of  determination  for  only  the  subject  iteration   as   defined   in 

Equation C.6.     All of these three parameter vectors are next weighted by a 

normalizing   vector  based  on   the  component  amplitudes.     This   normalizing 

is   important  because   a   small   amplitude  component  can  exhibit  relatively 

large  amplitude  and phase variations  due  simply  to  small  adjustments  in 

the   amplitudes   of  large,   neighboring   components   through   coupling   in   the 

basis   matrix;      normalizing   the   convergence   measures   de-emphasizes   these 

relatively  large  but  in   reality   small   absolute  variabilities   in   the   iterative 

process   down   to   an   acceptable   "weighted"   measure  of variation. 

Identifying   quantitative   values   used   to   define   convergence   of  these 

vectors  was  difficult,  particularly  when  the  goal  was  to be  as  generally 

applicable  as  possible.     Besides  the  previously-described  problem  of 

anticipating  what  types   of measures   are  important,   the  fact  that  the 

convergence   can   behave   asymptotically   means   that   small   reductions   in 

these   quantitative   thresholds   can   greatly   increase   the   number   of 

iterations.      The   chosen   values   represent   reasonable   compromises   between 

accuracy   and   computational   resources. 
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